
ADA132 320

UNCLASSIFIED

A TECHNICAL OVERVIEW OF THE NATIONAL SOFTWARE WORKS(U)
BOLT BERANEK AND NEWMAN INC CAMBRIDGE MA
R E SCHANTZ ET AL. MAR 83 BBN-5238 RADC-TR-83-80
F30602-81-C-0213 F/G 9/2 Nl

i

1

I o S •- I
" Li I«

I.I

M
2.2

2.0

11.8

125 11.4 il.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU M STANO»f»OS-'96 5-• A

^-

MMtfMAk. i>M

m
• • •"

A TECHNICAL OVERVIEW OF THE NATIONAL
SOFTWARE WORKS

Bolt Brqnalc and Ntwman, Inc.

$* *k

Richard I. Schmitz and Robart H. Thoma»

imm m PVBUC masE; ommmn mmm DTIC
SELECTEJfA

SEP 0 9 1983]•

E
ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griff It* Air Force Base. NY 19441

8 3 09 07 18T

This report has bM wvliwd by the RADC Public Affair* Office (PA)
Is riluMbli to tbo National Technical Information Sarvlca (ÄTIS). At MTIS
It will ba ralaaaabla to the general public, including foreign nations.

RADC-TR-83-80 has been reviewed and is approved for publication.
I

APPROVED

• PATRICIA J. BASKINGER
Iroject Engineer

T-

t

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER

^TOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or If you «lab to be removed fro« the RADC
•ailing list, or if the addressee la no longer employed by your organisation,
please notify RADC-(cOTD> Grifflas API MT 13441. This vial assist us la
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that It be returned.

 i mm --

F J mm* ii ii m\

I
IVMV" ' '•• ••"•-^mmaaam • L " " — 1 -mmmmmm

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DM» Entered)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

RADC-TR-83-80

2. GOVT ACCESSION NO

«. TITLE (end Subtitle)

A TECHNICAL OVERVIEW OF THE NATIONAL SOFTWARE
WORKS PROJECT

7. »UTHOB'JJ
Richard E. Schantz
Robert H. Thomas

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Bolt Beranek and Newman, Inc.
10 Moulton Street
Cambridge MA 02238

I I. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (COTD)
Griffiss AFB NY 13441

TT MONITORING AGENCV NAME 4 ADDRESS/"// different trow Controlling Oltitre)

Same

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT * PERIOD COVERED

Technical Report

6. PERFORMING O^G. REPORT NUMBER

BBN Reoort No. 5238
S CONTRACT OR GRANT NUMBER^;

F30602-81-C-0213

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

63728F - 64740F
25310115

12. REPORT DATE

March 1983
13. NUMBER OF PAGES

130
15 SECURITY CLASS, (ol thta report)

UNCLASSIFIED
15«. DEC LASSIFI CATION DOWNGRADING
„ . .SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (ot this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the ebetract entered In Block 20, it dllterent from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Patricia J. Baskinger (COTD)

19- KEY WORDS (Continue on revetee eide it neceaaary and Identify by block number)

National Software Works
NSW
Network Operating System

Distributed Systems
ARPA Network

ABSTRACT (Continue on raverea aide It neceatary and Identify by block number)

This report presents a technical overview of the National Software Works
System architecture and design. The NSW is a working example of a network
operating system, which is intended to integrate and provide uniform access
to software tools residing on a number of constituent host systems connected
to the ARPA Network,

2
DO , "tTn 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS RAGE (Whan Date BnleeeeT)

,
— •

•ppw*^ < < • ' •

I
I —

TABLE OP CONTENTS

Page

1. INTRODUCTION

1.1 Background and Technical Need 1
1.2 Participating Organizations 3
1.3 Objectives and Perspective for the Report 5
1.4 Report Overview 6

2. NSW PROJECT CHRONOLOGY

2.1 Structural Design and Feasibility Demonstration 7
2.2 Detailed Component Design 8
2.3 Prototype implementation 9
2.4 Reliability and Performance Improvement 10
2.5 Production System 12
2.6 AFLC Technology Demonstration 13

3. SYSTEM ARCHITECTURE 15

3.1 System Overview 17

4. INTERPROCESS COMMUNICATION ARCHITECTURE 25

4.1 MSG Design 27
4.2 Process Addressing 30
4.3 Transaction Protocols 33

4.3.1 NSW System Functionality 36

5. THE RESOURCE CATALOG MODEL FOR RETAINED OBJECTS 39

5.1 General Form of Object Name
5.2 Keys
5.3 Object Attributes
5.4 Name Lookup
5.5 Naming Single Objects
5.6 ELLIPSES
5.7 SCOPING
5.8 Entering Catalog Object Names
5.9 Naming Groups of Objects

39
41
43
43
44
44
46
48
49

6. PILE SYSTEM MECHANISMS 51

6.1 The NSW File System
6.2 File Images
6.3 Workspace Files
6.4 File Locks
6.5 File Representation
6.6 File Movement from Host-to-Host
6.7 File Translations

52
53
55
57
58
59
60

7. PROVIDING PROGRAM SERVICES 63

7.1 Tool Encapsulation
7.2 Conversational Partners

66
67

8. USER INTERFACE SOFTWARE 71

8.1 Command Interpretation
8.2 Interaction with NSW System Components
8.3 Terminal Control
8.4 Command Procedures
8.5 Access to NSW

71
71
73
73
74

RELIABILITY CONSIDERATIONS 79

9.1 Data Base Checkpointing
9.2 Saving Workspaces
9.3 Tool Bearing Host Restart and Data base

Resynchronization

81
82
84

ii
I

»

- •• --

—,

9.4 Failure Detection
9.5 Intermediate Status Replies
9.6 Handling Timeouts

85
86
89

10. PERFORMANCE CONSIDERATIONS 91

10.1 The Measurement Task
10.2 Evaluation and Analysis
10.3 A Closer Look at Resource Demand
10.4 Performance Enhancements

92
96
97

101

11. OPERATIONAL ISSUES 105

11.1 Global Configuration File
11.2 Fault Logger
11.3 NSW Bug Report Tracking Tool

105
106
108

12. CONCLUDING REMARKS 111

Acc^r.r, 1 on For
r~; • ;
:
u
J

a

p-'

Lty C
,'or

Dist Spec

A

iii

mm*.

LIST OF FIGURES

FIGURE 1A. 37
FIGURE IB. 37
FIGURE 1C. 38
FIGURE ID. 38
FIGURE 2. 75
FIGURE 3. 77
FIGURE 4. 87

I « — „.,
••• — II Mil .

1. INTRODUCTION

This report is a technical review of the National Software

Works (NSW) project and system development effort prepared for

the Rome air Development Center (RADC) and the Defense Advanced

Research projects Agency (DARPA). The NSW project was initiated

in 1974 as part of a larger ARPA/IPTO program addressing problems

concerning the high cost of producing quality software. RADC has

been a co-sponsor of the effort since 1975, and is now organizing

a technology demonstration of NSW system capabilities for the Air

Force Logistics Command, as part of an effort to introduce

networking concepts into the operational components of the Air

Force.

1.1 Background and Technical Need

The National Software Works (NSW) project began with the

objective of applying computer networking technology to improve

the distribution of software tools and reusable software modules

throughout the Defense Department. From the very beginning, the

program has had two complimentary but relatively independent

thrusts. The first has been the refinement and transfer of

existing Arpanet technology to operational service organizations.

The other has been the development of resource management

techniques for large networks of heterogeneous and geographically

distributed computers. The term heterogeneous in this context

means the computers can be supplied by a variety of vendors, have

different instruction sets, and run different operating systems.

t : ,
^—i.—- - mi^Wfc iMdMH^Mfca — —

•¥ ••• • i

The initial goal of the technology development component of

the National Software Works project was to provide a network of

geographically distributed heterogeneous computers with a uniform

user interface that made the incompatibilities and idiosyncrasies

of the individual systems invisible to the users. This approach

was based on two hypotheses:

1. That a large number of useful software development and
maintenance tools already existed, but were not widely
used because they were scattered across a variety of
incompatible operating systems making them difficult to
use.

2. That it would be much easier to integrate tools
together using standard network protocols than to
recode them or move them to different operating system
environments, and that a convenient and coherent user
interface could be achieved with appropriate protocols.

The attempt to retrofit coherence onto a network of existing

computers, operating systems and software tools has resulted in

the exploration of an important set of system architecture

alternatives, and substantial insight into the tradeoffs which

must be made in designing higher level protocols for computer

networks. It has also resulted in the development of an

operational prototype NSW system which is now being used for

conducting a technology demonstration for the Air Force Logistics

Command.

The idea that computer networks should be used to distribute

software tools and expertise is now widely accepted.

Publications on the National Software Works were among the first

articulations of that idea, and have certainly been a factor in

»

• • ^M^- . .^^m^^ammmmm~ mi i i i

•—

its widespread acceptance. All the operational network software

factories implemented to date have been simple star networks with

a single large time-sharing system at the center. The NSW

project was one of the earliest explorations of the concepts

associated with offering decentralized, heterogeneous services as

cf such a facility.

The NSW project was also one of the earliest and most

ambitious attempts at building a network operating system. The

need for systems of this type is evidenced by the proliferation

of projects with similar goals, and the coverage given to network

operating system issues in the technical literature. Experience

with the NSW system has served to identify and focus attention on

many of the problems in this new field of research, as well as

provide adequate solutions to a number of these problems.

1.2 Participating Organizations

Over the years of its existence, a number of different

organizations and individuals have participated in the project

and helped shape the directions that it took. The NSW project

was organized around committees of various types, and the design

process required consensus among participating groups of widely

differing orientation and background. Consequently, it is often

difficult to attribute key ideas or approaches LO specific

organizations or individuals. With only a few exceptions we will

not attempt these attributions. We will however, list the

t .

various participating organizations, their generic role, and a

very few of the key individuals contributing to the successes of

this project.
Sponsors

Advanced Research Projects Agency:
William Carlson,
Steve Crocker.

Rome Air Development Center:
Patricia Baskinger,
Richard Metzger, Richard Robinson,

Designers and Implemenhers

Bolt Beranek and Newmar Inc.:
Richard Schantz,
Robert Thomas

Honeywell Information Systems:
John Ata

Massachusetts Computer Associates:
Ross Faneuf,
Robert Millstein, Charles Muntz,
Kirk Sattley, Stu Schaffner,
Steve Warshall.

Massachusetts Institute of Technology:
Douglas Wells

SRI International (formerly Stanford Research Institute)
Charles Irby, Jon Postel,
Ricnard Watson, James White

University of California at Los Angeles:
Robert Braden, Neil Ludlam

Support Organizations

System Operators:
GSG Inc.

Tool Manager: IITRI

—
•-

1.3 Objectives and Perspective for the Report

At various times, different organizations have had overall

responsibility for the design and enhancement of the NSW system.

BBN was not one of the original participating contractors, but

has been largely responsible for recent design enhancements. As

a consequence, the task of writing this overview report falls to

us.

We have two objectives in writing this report. First, we

want to document some of the good ideas and innovative approaches

that are part of NSW system design. NSW was quite possibly the

most ambitious effort of its time in the distributed system area.

Integrating the many diverse aspects of a complete system

required that a wide variety of system issues, integral to any

distributed system architecture, be faced. This report is a

vehicle for documenting some of our solutions to those issues.

Second, we want to consolidate under one cover, all of the

technical dimensions of the problem addressed by the NSW project.

It has been said that system building is one of the more

difficult activities in our profession because of the wide

diversity of the components of any potentially operational

system. This report should serve to indicate the magnitude of

the effort needed for future endeavors of this type.

The emphasis of the report will be on the technical aspects

of the current system design. Other aspects of the project,

including organizational and managerial ones, have at times had

|

—>.~>MMaHHMki -- •••- -

significant impact. However, these aspects will not be the focus

of this report and will be ignored except for occasional

references where they directly impact the current technical

product. Little emphasis will be placed on the chronological

changes in the system design in deference to a more complete

description of the current design. We will occasionally discuss

functionality in its earlier forms to highlight the advantages of

the current approach. The perspective regarding the technical

assessment of what is important and what is not, as well as what

worked out well and what did not, is the author's alone.

1.4 Report Overview

In the next section, we provide a brief chronology of the

NSW project highlighting its many "eras". Following that, there

are sections describing the system and the major technical

results of the project. These sections are organized to first

provide a system overview, and to then discuss in depth each of a

number of different major aspects of the system. A number of the

important technical issues which have been raised during the

course of the project, and will likely be faced by other projects

with similar objectives are discussed in a concluding section.

—

2. NSW PROJECT CHRONOLOGY

The design and implementation of the National Software Works

has proceeded in six sometimes overlapping phases:

1. Structural design and feasibility demonstration

2. Detailed component design

3. Prototype implementation

4. Reliability and performance improvement

5. Management Plan and Production System

6. Air Force Logistics Command Technology Demonstration

In the following subsections we describe these phases in more

detail.

2.1 Structural Design and Feasibility Demonstration

The first phase of NSW development began in July 1974 and

concluded in November 1975. During this period, the basic

architecture of NSW was established. Further, relatively ad hoc

implementations of major components were made. These components

were integrated into a system which was demonstrated to ARPA and

Air Force personnel at Gunter AFB in November 1975. This system

demonstration exhibited various system functions, the use of

batch tools on the IBM 360 and Burroughs B4700, the use of

interactive tools on TENEX, transparent file motion and

translation, and a primitive set of project management functions.

The demonstration confirmed that the desired NSW facilities

L
___ •»»

,

"'•'"• '•' '

could be implemented and that semi-transparent use of a

distributed tool kit was feasible. The NSW System, however, was

inefficient and fragile. Further, many of the ad hoc

implementations had design weaknesses which limited their general

application to a sufficiently broad range of hosts and

capabilities. For these reasons, an effort was begun to produce

effective component designs.

2.2 Detailed Component Design

This second phase of NSW development started in June 1975.

Specifications were developed for Tool Bearing Host components —
1

MSG, Foreman, and File Package. All of these specification

documents were completed by March 1976. (They have all been

revised since then, but the original specifications are still

substantially in use.)

During the same period, the external specification for the

resource management and control system component (Works Manager)

was also produced. The remaining portions of the core of NSW —

i.e., the batch tool facility, consisting of the Works Manager

Operator, Interactive Batch Specifier, and Interface Protocol —

were designed during phase one, and those designs were retained

until phase four (see below).

L

i
The major components of the NSW system architecture are

presented in Section 3.

i — •MM

The remaining major NSW component, the user interface Front

End, was the subject of several design efforts over the course of

the project with different features in each. Two of these

designs were implemented and are available today, with one of

them targeted for the recent system enhancements and to be used

for the NSW technology demonstration.

2.3 Prototype Implementation

As specification documents were completed, various

contractors began implementation of the NSW components on the

initial set of hosts — TENEX, MULTICS, and IBM 360; these

efforts commenced in January 1976. Implementation on TENEX

proceeded more quickly than the efforts on the other hosts —

primarily because the MSG system designers were also TENEX

implementors. By October 1976 prototype implementations, which

conformed to the published specifications, had been made for all

TENEX components. In addition, all components of the core system

were available on TENEX.

Implementation of components on MULTICS and IBM 360

proceeded more slowly; however, initial implementations of MSG

components on both of these hosts were completed by the end of

1976. By November 1976 sufficient progress had been made on

implementation of a File Package and Foreman on MULTICS that it

was possible to demonstrate an interactive tool running on

MULTICS. Implementation of 360 (interactive) Tool Bearing Host

components reached a similar state in September 1977.

*^_1

r"r

.

Also during this phase, a Front End which provides a user

interface to the NSW functions supported by the Works Manager and

Foreman was implemented to run under TENEX.

Prototype implementations of the core system, TENEX tool

bearing host components, and the TENEX Front End that conformed

to the design specifications were demonstrated to Air Force and

ARPA personnel in November 1976. That prototype system supported

access to TENEX interactive tools and IBM 360 batch tools, as

well as to a rudimentary Multics interactive tool. At the same

time, a demonstration of MSG components on all three hosts was

also given.

2.4 Reliability and Performance Improvement

Even though implementation of components on MULTICS and IBM

360 was lagging, implementation of the core system, TENEX Tool

Bearing Host components, and TENEX Front End had proceeded to the

point that the issues of reliability and performance assumed

major importance. The system exhibited sufficient functional

capability that it could clearly support use by programmers if it

were sufficiently robust and responsive.

The first task attacked was to provide robustness. Work had

begun in 1975 on a full-scale NSW Reliability Plan — this was

the design for multiple Works Managers with duplicate data bases.

This detailed Plan was released in January 1977. Since it was

clear that implementation of the full Plan was a major

10

J ~ *^Bil^' -^•M*>—^ - -~*—**********

undertaking, a less ambitious Interim Reliability Plan which

ensured against loss of a user's files was begun in mid-1976.

This Plan was also released in January 1977. By June 1977 the

core system, TENBX Foreman, and TENEX Front End had been modified

to incorporate the features of that Interim Plan. In addition,

both the MULTICS and IBM 360 Foremen (only partially implemented)

were altered to conform externally to the scenarios specified by

the Interim Reliability Plan. A system exhibiting the new

scenarios was released for use in June 1977.

Performance of NSW had been limited from the initial

implementation. The reasons for its limited performance were

many, including:

o NSW components (which constitute an operating system)
were executed exclusively as user processes under the
local host operating systems.

o Component implementation had been oriented towards ease
of debugging and other concerns of prototype systems
rather than towards the performance expected of a
production system.

o Strict adherence to logical boundaries in developing the
component implementations led to a system implementation
which relied heavily on relatively expensive
interprocess communication.

In 1977, efforts to improve NSW performance were begun.

The first effort was the development of a performance

measuring package for TENEX NSG. Results of the first set of

measurements were reported in April 1977. A number of more

sophisticated measuring packages were completed by February 1978.

11

»

——— «^M

'

.

By May 197 8, all TENEX components had been instrumented and

measurements of page use, CPU time, elapsed time, etc., had been

taken under a variety of system load conditions and on several

different TENEX hosts. Efforts were then undertaken to develop

performance improvements suggested by these measurements.

Performance improvement is still an ongoing activity.

2.5 Production System

As the effort to improve NSW reliability and performance was

underway, efforts were begun to make NSW a more packaged product

and a system which could be operated by other than system

developers. The TENEX system components were converted to run

under TOPS-20 to take advantage of more cost-effective hardware

technology and a commercially available base operating system.

Tools to help operate the system were developed. Regression

tests for the NSW functions accessible through the user interface

were developed and applied to each version of the system prior to

its release. A user's manual for the system was published.

Documentation of the core system was produced. Finally, a draft

configuration management plan was developed.

In late 1978 an NSW Product Management Plan was generated.

This document identified a number of roles associated with the

continued development, operation, and support for NSW as a

product.

A computerized tool for coordinating the reporting,

12

 - -

checking, fixing, and testing of software problems has been

developed and put into use: it is called MONSTR — MONitor for

Software Trouble Reporting. It is driven by a table of protocols

defining the desired interactions between all the organizations

listed above, and handles the passage of messages through the

appropriate channels between them.

2.6 AFLC Technology Demonstration

The Air Force Logistics Command (AFLC) was brought into the

program in 197 8, with plans to conduct a series of techrology

evaluation experiments during the 1981-1983 time frame. The plan

for the AFLC NSW experiments involves the installation of ARPANET

nodes at thtee major Air Logistics Centers, experimental ARPANET

access to mission relevant software tools available on selected

ARPANET host, and finally, access to these same tools through the

NSW system, using an NSW access host available at each

participating Air Force base. As part of this plan, an NSW Front

End component was implemented for the DEC PDP-11 family of

computers using the UNIX operating system as a base. It is

intended that this be the primary NSW access host for the AFLC

NSW experiments.

As part of the preparation for the AFLC technology

demonstration, the NSW system design and implementation has

undergone a thorough evaluation and enhancement phase to add or

augment capabilities which were needed to support the expected

13

...,,-,,. i •nd—fc ' - - - -

• -———

AFLC usage patterns. These enhancements have been completed

continuing under current RADC sponsorship.

14

- - -
• U I I .

rr »«-

3. SYSTEM ARCHITECTURE

The original goal of the NSW project was to design and

implement a software development support system which would both

provide convenient access to off-the-shelf software development

tools which run on a variety of hosts connected to the ARPANET,

and also serve as a vehicle for providing various forms of

automated software project management. Over time these goals

have been clarified, extended and modified as the project evolved

and passed through its many phases.

This report focuses on the technical aspects of what has

become the dominant theme of the project: designing, implementing

and operating a network operating system which provides

convenient access to software tools dispersed throughout the

hosts connected to the ARPANET. Access to and interoperability

of such tools has been one of the principal NSW goals, and has

been the motivating factor behind a substantial part of the NSW

design. At times there have been other goals which have

influenced parts of the system that were developed at the time

these goals were prevalent. However, we will not focus on any of

these other aspects of the system, preferring instead to

concentrate on technical details concerned with building a

network operating system.

Since the system has changed, in some cases rather

substantially, over its lifetime, and continues to have

unimplemented features, describing it is often a blend of what

15

•— " • "!••,.• .. ^

rr ••'•"

was, what is and what might be. Our goal here is to present an

accurate picture of the current NSW system. Only where it is

important to understanding the utility of a current concept, or

because a function has been included only to support future

enhancement will we go into detail about what was or what might

be part of the future NSW systems.

The NSW project is still ongoing, in its demonstration phase

and the system continues to be maintained in support of the AFLC

Technology Demonstration. The AFLC Technology Demonstration

represents the first non-experimental sustained use of the

system. As a result, it is too early to evaluate the overall

effectiveness of a system of this type as matched against the

needs of a typical user community like the Air Force Logistics

Command. A more comprehensive evaluation of the functionality of

the NSW should be planned to follow technology demonstration.

The remaining sections describe aspects of the current NSW

system from each of the following perspectives:

o system architecture

o system functionality

o system reliability

o system performance

o system operation

16

—

._.._.. .

3.1 System Overview

There are two distinct but related aspects of the NSW

system. One aspect is the system architecture while the other is

the system functionality supported by the architecture. There is

often a fuz?.y boundary between the two as will be evident in the

following discussion.

The basic problem to be confronted by the NSW project was to

transform an existing environment consisting of a nuaber of

heterogeneous autonomously operated computer systems (including

their operating systems and the programs they support)

interconnected by a medium speed, connection oriented

communication subsystem (the ARPANET and the standard NCP host-

to-host protocol) into a more coherent collection of computer

services provided to the user under the auspices of a single

network operating system. Basic to this objective wert key

concepts of uniformity and interoperability. Thus we can view

NSW as an operating system designed to support users in a

computer network environment.

In tsome respects NSW appears like most modern operating

systems. For example, NSW must support, common system functions

such as user authentication, a filing system, a command

interpreterf and so forth. However, NSW differs from

conventional operating systems in some very significant ways.

The basic building blocks for the NSW system are not traditional

hardware components such as processors and memory devices.

17

"• • • — ä^—*m~. I ^

Rather» they are existing conventional operating systems and the

services they provide, along with an appropriate interconnection

medium.

A premise of the NSW concept is that there currently exist a

wide variety of application software services which have proven

their effectiveness. A goal of the NSW system is to augment the

utility of these services by providing users a uniform access

path to them regardless of their originating host and to

facilitate the use of groups of them together in an integrated

fashion. As a result, users can be offered a wider variety of

services than by any conventional system, the potential user

community for a given software service can be greatly expanded,

and new services can be tested and evaluated in a convenient

fashion by a diverse set of interested users prior to being made

available to the entire user community.

The NSW concept also recognizes that some of the available

services may already be reasonably complete systems. NSW

represents a means for integrating such systems into a coherent

framework for collaboration among individual users and between

organizations. Such a framework is made possible by, but not

directly supported through, computer network technology and its

low level communication protocols. As a network operating system

NSW can greatly amplify the utility of the network technology by

providing uniform access to, and centralized uniform access

control for, objects (data, computing services, programs)

18

—

distributed around the network. Without such a utility, network

users are often forced into awkward and tedious work patterns

which inhibit cooperation and often preclude the use of new

software services.

The evolution of the NSW system structure has been shaped by

a fairly complex relationship between design, the notion of

prototype implementation, and organizational convenience. The

structure is a consequence of the earliest decisions to

functionally decompose the design into a number of basic units

which reflected various aspects of the NSW functionality, and

which could accommodate the most complex pattern of activities

anticipated for the system. There would be a Works Manager

component which represented a logically centralized resource

management component. There would be a Front End component which

managed the user interface to the NSW functionality. There would

also be Tool and File Bearing Host Components for integrating

programs and file systems into the NSW concept of host

transparent program execution and user transparent file movement

and conversion. These components were known as the Foreman and

File Package, respectively.

Each active NSW user has a dedicated Front End process which

acts as his interface to the NSW system- The Froi.f End acts

principally as a command language intetpieter making «eguests

upon other components as necessary to satisfy user commands. The

Front End process supports a standard NSW user interface,

19

r^ "

»

including a standard set of control functions and commands,

regardless of the host on which it is actually implemented.

The Works Manager is the resource allocation and access

control module for the NSW system. All attempts to access NSW

resources, such as tools or files, must be authorized by the

Works Manager. To perform its task, the Works Manager maintains

data bases such as an NSW file system catalog, tool descriptor

information, and user authentication information. It also

maintains lists of the rights and privileges of each user known

to the system. Interactions between Works Manager processes and

other system components occur on a transaction oriented basis.

That is, the system does not dedicate a single Works Manager

process to each active user for the duration of the user session.

Rather, Works Manager processes are dynamically allocated (and

deallocated) as necessary to support a user session. For

example, when a user initiates a command that requires access to

an NSW resource a Works Manager process is allocated to handle

requests related to that command. Upon completion of the command

the Works Manager process is deallocated (i.e., either returned

to a pool of free Works Manager processes or terminated).

Continuity across such instances of Works Manager service is

achieved through the use of a shared dynamic data base which

depicts the momentary state of NSW, including lists of currently

logged in users and their active tools.

File Package processes are responsible for file movement and

20

— -~-

translation. A File Package resides on every NSW Tool Bearing

Host. Once access to an NSW file has been granted, it is the job

of the File Package to make a suitable copy available. The Works

Manager process arranges for File Package processes at the file

source ("donor" File Package) and destination ("receiver" File

Package) hosts to cooperate to accomplish this movement and

translation. The receiving File Package drives the copy

procedure and has the task of creating a copy with equivalent

logical structure as the original. Like Works Manager processes,

File Package processes are allocated on a transaction oriented

basis. When the file movement is completed, File Package

processes are deallocated.

The Tool Bearing Host Foreman is the tool's interface to the

NSW. When a user requests the start of a tool, an Foreman

process on the appropriate Tool Bearing Host is allocated for the

duration of the tool session. The Foreman process provides the

NSW execution environment for the tool and controls its

operation. This execution environment differs somewhat from the

standard environment provided to the tool by the local Tool

Bearing Host operating system. For example, when a "file open"

operation is initiated by a tool, the operation must be processed

in the context of the entire NSW rather than that of the local

host operating system. The Foreman process responds to such an

attempt by interacting with a Works Manager process to complete

the file reference. The Works Manager process consults the NSW

file catalog to verify the existence of the file specified by the

21

— - i i*i i •.m^^tm«^i^i i^^a^^^afcM>fc ...

"Ill

Foreman, and that the user and tool ace authorized to access the

file. Next, the Works Manager acts to ensure that the file can

be physically accessed by the Foreman/tool. In general, this nay

require movement of the file to the Foreman host and possible

translation of file data to a form usable by the tool. The

Foreman provides each tool instance with a temporary workspace

for file manipulation during a tool session. Once the file is

physically accessible in the workspace, the tool uses the local

host file system primitive operations for manipulating the file

data. It is the responsibility of the Foreman to manage the

available Tool Bearing Host workspaces and to maintain the

isolation of the tool from other processing on the host operating

system. In some cases a Foreman process directly uses

information provided by the Works Manager (i.e. file descriptors

cataloged in the NSW file system) to complete the file reference

on behalf of the tool.

Interactions between these components are sufficient to

describe all of the basic NSW operations. This type of

functional breakdown had the property that it could uniformly

describe the system operations independently of the physical

location of either the user or the objects being manipulated,

e.g., tools or files.

This interaction model of the NSW system components requires

an architecture or framework into which the component

interactions can be placed. As we shall see, this architecture

22

— i iii^M^fci M—ii^a —i 1*11 min

"•'•'-

.

is based on the envisioned high level functionality which was

originally anticipated, but now takes on an existence quite

independent of that functionality. The architecture referred to

in this context represents the link between the highest levels of

the system design as embodied by processes supporting the

functions of the NSW components (e.g., Works Manager, Foreman,

etc.), and the lower levels of the system as embodied by the

disparate individual operating systems and their resources. This

link includes, but is not limited to, system wide conventions for

interprocess communication, process management and interprocess

and transaction protocols. The major part of the interprocess

communication architecture was the design and development of the

communication subsystem known as MSG. In the next section we

will describe key aspects of the interprocess architecture,

before continuing with the description of the higher level NSW

functionality.

23

4. INTERPROCESS COMMUNICATION ARCHITECTURE

The interprocess architecture design grew out of the

analysis of the various patterns of communication among

previously mentioned system components which were thought

necessary to implement the system functionality. The following

were typical of those original analyses of intercomponent

communication requirements.

o Front End - Works Manager

Communication between these processes consists of user
requests for NSW resources (Front End to Works Manager)
and Works Manager responses to such requests (Works
Manager to Front End). Examples of such requests are:
run a tool, copy a file, delete a file, etc. These
requests are relatively infrequent - a user may make
only a few per hour. Each request is short - almost all
requests can easily be encoded in 1000 bits. The
response to each request is also short - again, less
than 1000 bits. The time required to process a request
is generally brief - certainly on the order of
milliseconds as compared to the minutes between
requests. There is no necessity for a request to be
processed by the same Works Manager process that
processed any previous request (since all instances of
the Works Manager share the same common data base).
Hence a communication link need not be retained between
a Front End and a Works Manager between resource
requests. Thus we can characterize Front End - Works
Manager communication as a sequence of unrelated
elements, where each element is a short request, a brief
delay, and a short response, and there is a long delay
until the next element of the sequence.

o Tool/Foreman - Works Manager

These communications are exactly analogous to Front End
- Works communications. A tool (on behalf of a user)
requests an NSW resource of the Works Manager. Examples
of such requests are: open a file, create a subsidiary
tool process, deliver a file, etc. As above, these
requests are generally less than 1000 bits, are
processed by the Works Manager in milliseconds, have
responses of less than 1000 bits, and are relatively

25

mm

r^
infrequent. The only difference between this pattern
and the preceding pattern is that tool requests are more
frequent than Front End requests, although the time
between such requests is still measurable in minutes.

o Front End - Tool/Foreman

Communication between these processes consists of user
commands to tools and tool responses to users. In some
cases these communications will fit into the same
pattern as the the three previous cases. Often, however
the pattern is different. Consecutive requests are
related and must be serviced by the same tool. The time
between the user's command and the tool's response may
be greater than the time between the response to the
previous command and the issuing of the next command.
Also, the frequency of user commands to tools may be
much greater than the frequency of either user or tool
requests to the Works Manager. In addition, the length
of a Front End - tool/Foreman communication may be
large. For example, in a typical session a user might
request the use of a text editor (Front End - Works
Manager communication), get a particular file to edit
(tool/Foreman - Works Manager communication), and then
insert two two hundred lines of program text into that
file. Thus Front End - tool/Foreman communication is
expected to vary form the infrequent, short request
pattern to frequent, long transmissions of information.

o File Package - File Package

Some very small fraction of these communications will
consist of short, infrequent messages - e.g., a source
File Package telling a destination File Package the
length and encodement of a file - but the bulk of such
communication will consist of files being transferred.
Thus we can characterize this pattern as infrequent
transmission of many bits.

The types of interprocess communication that were needed to

provide the NSW functionality fell into three basic categories:

o infrequent short transactions between previously
unrelated processes (pattern 1).

o More frequent, continuing transactions between processes
which maintain a relationship (pattern 2)

o Very long transactions or very frequent extended
transactions (pattern 3).

26

«Mk.

•• •' —-- '- '

4.1 MSG Design

HSG was designed to support these NSW patterns of

communication by providing two different modes of process

addressing:

o generic addressing

o specific addressing

and three different modes of communication

o messages

o direct communication paths (connections)

o alarms

Generic addressing is used by processes which either have

not communicated before or for which the details of any past

communication is irrelevant. It is restricted to the message

mode of communication. A valid generic address specifies a

functional process class. When MSG accepts a generically

addressed message it selects as a destination some process which

is not only in the generic class addressed but has also declared

its willingness to receive a generically addressed message. If

there is no such process, MSG may create one. Pattern 1

communication is always initiated by the transmission of a

generically addressed message between some pair of processes.

A valid specific address refers to exactly one process and

this address remains valid for the life of that process.

27

-"•'•'" • •"•' • • n»JMM^^^. I—

Specific addressing may be used with all three communication

modes. Specific addressing is used between processes which are

familiar with each other. The familiarity is generally because

the processes have communicated with each other before, either

directly or through intermediary processes.

Message exchange is provided by MSG to support the

requirements of pattern 1 communication and some pattern 2

communication. It is expected to be the most common mode of

communication among NSW processes. To send a message, a process

addresses it by specifying the address of the process to receive

the message and then executes and MSG "send" primitive which

requests MSG to deliver the message. When MSG delivers a message

to a process it also delivers the name (i.e., specific address)

of the process that send the message.

The second mode of MSG communication is direct access

communication. A pair of processes can request that MSG

establish a direct communication path between them. Direct

communication paths are provided to support the requirements of

pattern 3 communication, such as file transfers between hosts,

and some pattern 2 communication, such as terminal-like

communication between a Front End and tool/Foreman. The ARPANET

realization for a direct communication path is a host-to-host

connection or pair of connections.

The alarm mode of communication is supported by MSG to

satisfy a communication requirement typically satisfied by

28

i -—*.

" '

interrupts in other interprocess communication systems. Alarms

provide a means fot the process to alert another process to the

occurrence of an exceptional or unusual event. Processes may

send and receive alarms much as they send and receive messages.

However, there are significant differences between alarms and

messages. The rules that govern the flow and delivery of alarms

are different from those that govern the flow and delivery of

messages. In particular, the delivery of an alarm to a process

is independent of any message flow to the process. That is, the

delivery of an alarm to a process cannot be blocked by any

messages queued for delivery to the process. Unlike a message

which can carry a substantial amount of information, the

information conveyed by an alam is limited to a very short alarm

code. This limitation implies that the delivery of alarms can be

accomplished in a way that r^uires Little in the way of

communication or storage resources. This makes it possible for

MSG to insure certain "priority" treatment for alarms which makes

them suitable tor alerting processes to exceptional events.

While similar to traditional interrupts, alarms are different in

o;i3 Important respect: the aelivery of an alarm to a process

does not necessarily imply that the process is subjected to a

forced transfer of control by MSG. For this reason, we have

chosen co use the term alarm rather than interrupt.

NSW is implemented as a number of processes running

concurrently on a nui, jer of different host computer systems.

These hosts are heterogeneous systems with widely varying support

29

for the concept of "process" and the environment they provide for

supporting processes. MSG on each host can be thought of as a

uniform extension of the host's operating system. It provides

the basis of the commonality necessary for the high level NSW

components (e.g., Works Manager, Front End, etc.), which are

developed out of the local operating system concept of process,

to communicate with each other in structured and well-defined

ways despite the heterogeneous environment. MSG is the abstract

environment upon which the NSW system design is specified. As a

consequence, every host participating in the NSW system must have

an implementation of MSG to support its NSW processes. However,

a host need not support all of the NSW functional components.

Consequently a host's role in the system will be defined by the

collection of NSW components it implements.

4.2 Process Addressing

It was decided during the design of MSG to support a global

process naming convention. Under such as scheme, a process has a

unique name which can be used for communication purposes by any

other communicating process. This is in contrast to a relative

naming scheme in which different processes use different names to

address the same process. A major motivation for adopting a

global naming strategy was to support the ability of processes to

pass useable process names in interprocess messages without

system intervention. This strategy has proven very convenient

and valuable in easily developing and extending multi-process

30

, .

mm

transactions (i.e., more than two processes working on a single

transaction) merely by including process names as data in

function invocation messages.

NSW is expected to operate continuously, but individual

hosts may not be continuously part of it. This can occur because

a given host is not scheduled for continuous NSW service, or

because the host has failed. We have defined a particular period

of NSW service by a host as a host incarnation designated by:

<host incarnation name>::=<host designator^ <incarnation

designator> where <host designator> uniquely identifies a

particular host computer, and <incarnation designator> is an

integer which indicates the particular period of NSW service by

this host.

The host incarnation name is part of each HSG process name.

The purpose of including the host incarnation in the process name

is to provide a means for allowing the system (i.e., MSG) to

easily determine whether a given process name refers to a process

that may currently exist or to one that existed during a previous

period of MSG service by the host computer in question. In

particular, tince global process names of communicating processes

are sometimes stored for long periods of time before they are

again needed to initiate a transaction with a specific process,

system recognition of obsolete process names resulting from a

host crash and restart relieves the components of this type of

message validity checking.

31

An alternative to including a host incarnation field in the

global process naming scheme would have been to never reuse a

process name. This approach is now becoming popular by using

large, monolithic, unique identification numbers. In essence,

the use of a host incarnation field within a global process name

is a means for providing decentralized generation of unique

process id's, provided the incarnation field is sufficiently

large to not require recycling. Although the field was fairly

large, the specification did not require that the incarnation

field be unique for all time. Selecting an appropriate scheme

for "remembering" previously used incarnation numbers for a

"sufficient" time was left to the discretion of the MSG

implementers on the individual hosts. In practice, the issue of

misaddressed messages due to system restarts has not been a

problem.

A complete MSG process name is of the following form:

<process name>::= <host incarnation> <generic designator>
<specific designator>

The generic designator is a string which characterizes a

process in terms of its functional relationship to other

processes, and is instrumental in selecting a process to receive

a generic request. For example, processes with generic

designator WN are candidates for messages which involve Works

Manager functions. The specific designator is an integer which

is utilized by the MSG implementation to ensure unique process

32

I
. —

names. A process name is always unambiguous. At all times it

either corresponds to a single process or is invalid.

It should be clear that the MSG concept of process name also

includes notions of both physical and functional addressing. The

host incarnation fiele serves as a means of locating the

referenced process, while the generic designator indicates the

role of the process in the higher level system structure.

Including these concepts in the process addressing scheme makes

it more difficult to "migrate" a process to another host, or to

nave processes play more than one functional role. Neither of

these have been problems in the NSW experience, while the

inclusion of these concepts in the programmer visible interface

to process names has aided immeasurably in the understanding,

debuggability, and traceahilitv of failures relating to the

component implementations.

4.3 Transaction Protocols

MSG provides support for process-to-process message

exchange, ar>0 a means (generic addressing) for processes to

initiate message communication with other previously unrelated

processes. At tne level of the MSG process interface, a message

is an eninterpretec eequer.ee of bytes.

Two additional conventions to provide the general rules for

intercomponent interactions have been estaolished to provide the

qeneral rules for intercomponent interactions. One convention,

33

M

NSWB8, specifies the data types and data encodement of the

message contents. Since NSW is based on communication between

heterogeneous host systems, these conventions are required in

order to have data meaningfully communicated and universally

understood.

NSWB8 defines seven data types and their representation

within message communication. There are six basic data types for

transmitting data (boolean, index (small positive integer),

signed integer, bit string, character string and an empty data

type), and an additional type (list) to provide extensible data

structures. A list data structure contains a specified number of

other data elements, including possible embedded lists. Higher

level data structures can be communicated using an appropriate

set of these primitive data types. For example, resource charges

for a tool session are represented in NSW messages as a list of

two items, the first item being an index representing the type of

charge, while the second item of the list is an integer

representing the dollar amount of the charge. All data

communicated between NSW processes in MSG messages is typed

according to NSWB8 conventions.

An additional set of conventions, known as the NSW

Transaction Protocol or NSWTP, has also been developed to provide

a uniform way of formatting messages used to initiate functions

and to reply to function invocations. NSWTP is specified in

terms of NSWB8 data items. The basic model which NSWTP supports

34

(i

i dM^ mmmmmm0Hmmi

————""•-•••• •

is that of a transaction whereby one process invokes a function

or procedure in another process, and may at some later have time

a reply to that request returned to it.

An NSWTP message is a list structure consisting of fields

indicating the type of message (e.g. function invocation, reply

to function invocation), a transaction identifier used to match

requests with their responses, and parameters of the request or

response including a well-defined placement of the name of the

function to be invoked and its outcome (success or failure code

and error message). In addition, closely associated with the

NSWTP protocol are conventions that specify how to obtain

additional information which may be required to complete a

transaction but which was not or could not be specified when the

transaction was initiated. Such information ranges from

providing missing parameters, to disambiguating names, to

confirming actions. Very often this information is supplied by

an on-line user through his Front End process, but it can be

supplied by any help process specified in the transaction. To

flexibly support this form of "help" a process initiating a

transaction may specify another process as a help process, to be

called in certain well-defined circumstances to provide the

additional information required to complete the transaction. If

no help is available when required, the operation is aborted. In

a typical use of the help mechanism, the Foreman might specify

the Front End process as the help process in a file Lookup

transaction with the Works Manager.

35

- --- •

r^ •

»

NSWTP is used to support interactions between NSW processes

which do not require reply messages, in addition to the more

widely used request/reply transaction paradigm. In addition,

more complex patterns of component interactions, known as

scenarios, are built out of combinations of request and

request/reply transactions.

There are a number of frequently used patterns of

transactions which are used to support the NSW functionality.

Some of the simple and compound transactions typically utilized

in the high level scenarios are illustrated in Figure 1.

4.3.1 NSW System Functionality

The previous section provided an extensive descriptin of the

architectural framework upon which the NSW system is constructed.

In this and the followign two sections we move up a level to

decribe in some detail the functionality which NSW provides, and

the roles of the various components in supporting that

functionality. This section focusses on the system control

software as embodied by the Works Manager components.

36

— .-i mil i

Figure 1A

Process 1 ;::::.:::::::* Process 2

simple request/reply

Figure IB

 n

Process 1 Process 2

2 -^
Process 3

.—. 1

3
 ^

compound request replv

37

_. atkHU

Figure IC

pi
Process 2

Process 1

*

• * *
ML

4 ^

Process 3

sequential simple request/reply

Figure ID

Process 2

71
•

•
•

•

Process 1
I 2

ft
V

\3
V Process 3
"\

asynchronous compound request only

38

... •• • . • •-•-

5. THE RESOURCE CATALOG MODEL FOR RETAINED OBJECTS

Much of NSW'S concern is with the objects it manages, and

the agents that attempt to access them. This section presents

the basic notions relating to naming and manipulating NSW objects

through the resource category. Because the naming and access

control mechanisms used in the NSW Resource catalog have a number

of unique features, we describe them in some detail. It was

intended that the features for the catalog naming and access

control mechanisms be useful for developing tools supporting

project and configuration management.

Objects are the elements which make up NSW resource space.

Examples of objects are files and services. NSW resource space

is defined by the Resource Catalog. The Resource Catalog and the

NSW software that uses it, in effect, implements a global

symbolic name space for objects. NSW has been somewhat unique in

its attempt at using a generalized associative retrieval data

base facility as the basis for the implementation of the Resource

The object name lookup mechanisms have been tailored somewhat

to this type of underlying catalog organization.

5.1 General Form of Object Name

The NSW resource catalog supports a single, uniform name

space for naming all retained NSW objects. Objects are named as

an ordered sequence of name components, separated by the special

character "." It is often useful to view an object's name as a

39

*

«•M

path through the hierarchical NSW name space. A full NSW object

name begins at the root of the hierarchy, and names a single

terminal object through the sequence of ordered name components.

In the NSW resource catalog, it is also true that each object is

named by a unique complete name, i.e., it is reachable by exactly

one path from the root.

The syntactic form of an object name in the catalog will be

referred to below as an Objectspec (object specifier). An

ObjectSpec always describes either one catalog object (if it

exists) or no catalog object (if the object is not in the

catalog). There is also a syntactic form that refers to groups

of catalog objects, called a RegionSpec (region specifier). A

region specifier uses a special "wild card" symbol (*) to

designate the position in the name specifier which is variable

and can match any object with zero or more intervening name

components. ObjectSpecs and RegionSpecs may be rooted

specifiers, in the sense that they contain the entire path from

the root of naming hierarchy, or they may be unrooted and contain

only a part of the path, the remainder to be supplied by the

context in which they are used (i.e., by the scoping mechanism,

to be described). The special symbol "$" prefixed to the first

name is the covention used to indicate a rooted specifier

40

• —'^^^^— ——•»— -*——*- - -—"--—»-~^_-._

5.2 Keys

NSW access control is based on permissions held by the

accessing agent. The representation of a permission within NSW

is called a key.

Keys could conceivably be on a per object basis; that is, to

access a file a user could be required to hold a permission for

that file. There are two factors that make exclusive use of this

approach infeasible for NSW:

1. Pile creation and deletion are expected to be very
common operations. This means that the file name space
will be a relatively rapidly and dynamically changing
space. Consequently, rights on a per file basis would
require a great deal of book keeping, both by users and
by the system to keep rights up to date.

2. There are expected to be a very large number of files.
Consequently, rights on a per file basis would require
a very large number of permissions, even "larger than
the number of files when sharing is accounted for.

Accordingly, for controlling access to resource catalog

objects, a key may refer to either a single object in NSW name

space or all objects in a region of NSW name spare, i.e., a key

may be either an ObjectSpec or a RegionSpec. Keys are always

rooted. Keys are stored within NSW in unevaluated form until an

access test must be made, so the possessor of a key may use its

permission to access objects created after the creation of the

key. When a key is created, the set of objects in the catalog

covered by the key (whether only a single object or many objects)

may be empty.. Keys ar? stored with the node record to which the

permission applies.

41

ÜMMBHB

•—*--— 1
There are different permissions for dispensing different

kinds of access privilege. A single key grants the possessor

only one kind of permission for the region of the catalog name

space covered by the key. Three kinds of permissions are defined

for reading and writing the catalog itself. These are:

o LOOKUP permissions, required to do catalog object lookup
operations in a given region (somewhat equivalent to
directory read access on some systems),

o ENTER permissions, required to create a new object name
in a given region (similar to directory write on some
systems),

o DELETE permissions, required to remove a current catalog
object name in a given region (a specialized form of
directory write).

These permissions are applicable to all catalog operations

regardless of the type of the object being manipulated. There

are a number of other types of permissions which are applicable

to one or more object types (e.g. execute permission, applicable

to service objects).

In addition to these private keys, there is a system table

recording public keys. Public keys are keys which system

administrators have determined to be available for all users of

the system. A user's permissions are defined by the union of his

private keys with any public keys. Public keys are merely a

simple mechanism to both avoid replication and support convenient

update of keys common to all users. The regions covered are part

of the "system".

42

II
5.3 Object Attributes

All objects in the NSW resource catalog have attributes

including (but not limited to) "type" and "site", where "type" is

the name of one of the system supported types (e.g., file) and

"site" indicates the host on which the objects resides. Other

attributes include an indication of the creating agent, time of

last modification, file format, etc. Every NSW object has a

unique name independent of its attributes. Objects cannot differ

only in their attributes. The "site" attribute is used as a

means for user control over selection and placement decisions.

5.4 Name Lookup

In general, manipulation of NSW objects proceeds in four

phases:

1. name and attribute lookup

2. disambiguation (optional)

3. typed access control check

4. manipulation of the object itself

We can view the phases of object manipulation as a process of

refining the set of objects which meet the specified

requirements. Name and attribute lookup produces a set of one cr

more possible objects meeting the name and attribute constraints

specified by a user. This set can be reduced to a single object

via a search rule or user help via a disambiguation dialogue.

43

1
»

This single object is the result of the lookup procedure, which

is then checked for appropriate access control based on the type

of object found and the type of manipulation requested.

5.5 Naming Single Objects

All accesses to the NSW object catalog requiring an existing

object use the same lookup procedures, which are as follows for

the case where a rooted ObjectSpec (i.e., name beginning with

"$") is given:

o Verify that the user holds a lookup key inclusive of the
full name object specifier; if none, lookup fails.

o Lookup the named object and return its catalog entry
handle; if no such object, lookup fails.

o If attributes are specified, succeed only if object
found has the required attributes.

When referencing an NSW catalog object, a user need not always

give a rooted ObjectSpec. Two mechanisms exist which allow some

name components to be omitted when referencing an object. The

mechanisms are scoping to support relative naming and ellipses to

support omitted component names.

5.6 ELLIPSES

When specifying an object name (not a key or scope), an

ellipsis represented by the special 6ymbol "..." may be used to

indicate 0 or more components may be missing from the name as

specified, at the position of the ellipsis. Ellipses may occur

44

anywhere in an Object spec, but no two ellipses may be adjacent

(they must be separated by at least one name component, e.g.,

$A..,B...). Conceptually, an ellipsis signifies missing name

components that the user expects to be uniquely defined by the

portion of the object name that is explicitly given. If a

specifier contains an ellipsis, and the system discovers upon

checking the catalog that the portion of the name replacing the

ellipsis is not unique, the user will be asked to select exactly

one of the alternatives (if user help is available) or the lookup

will fail (if user help is not available, e.g., name resolution

during a batch run). For example, suppose the catalog contains

only the names

1. $public.tools.TECO.RADC-20

2. $public.tools.TECO.ISIE

i. $public.documentaLi j.i.TECO.ÄADc-20

4. $public.tools.Simula.RADC-20

The specifiers $...J[S1E , $...Simula... , and

$public.documentation.TECO... all refer to unique objects (2, 4,

and 3, respeccively). The specifier ?...TECO... is ambiguous

with three possible matches (1, 2, and 3) and the specifier

Spinjlic...Til CO. RADC-20 is ambiguous with two possible matches (1

and J) .

45

—

5.7 SCOPING

The resource catalog lookup function allows users (programs)

to reference objects relative to user selectable regions of

global NSW resource space. These regions which are used as part

of the lookup function are called scopes and are referred to by

ScopeSpecs (scope specifiers). Several ScopeSpecs can be

combined according to parallel or sequential lookup rules (see

below) to form a user's scope.

A ScopeSpec is a sequence of name components that designates

a region of NSW name space, a context in which unrooted

specifiers can be looked up or entered. A ScopeSpec is

syntactically a rooted RegionSpec with exactly one instance of a

"wild card" component (*). The wild card designator is used to

match any number of unspecified name components in that position

of the name specifier. Often, but not necessarily, the wild card

symbol will occur at the end of the ScopeSpec. For example,

$A.B.* and $A.*.B are valid ScopeSpecs, but $A.*.B.* and $A.B are

not.

Under scoping, when a user provides an unrooted ObjectSpec

or RegionSpec, it is substituted for the wild card symbol in a

ScopeSpec to form a rooted ObjectSpec which is then subject to

the standard NSW catalog lookup procedures. Naming an object

relative to a ScopeSpec is much the same as directory-relative

naming common on other systems. Each NSW user has a collection

of ScopeSpecs, called the user's Scope, which supports all lookup

46

—^^^~- i*——^i—— - -

——————w^.^——

operations regardless of the NSW operation being performed. At

any instant of time, a user's scope roust contain at least one

ScopeSpec, but may contain many more. The user's ?r:pe is

maintained as a per-session data object, initialized fro« the
2

user's permanent node record . The scope can be modified either

permanently in the node record or temporarily in ch„' sessio-.i

record. It is not necessary for a user to have pe emission for

objects in a scope when the scope is created oc <:*p.s,ided, since

permissions are checked only when the uset attempts access to an

object.

All unrooted ObjectSpecs and unrooted RegionSpecs use the

scoping mechanism. The scoping mechanism is bypassed for rooted

specifiers; prefixing the specifier with the special symbol "$"

indicates that the name is rooted and should be looked up in the

context of the entire catalog. The convention used throughout

the NSW is that names which begin with a $ are relative to the

root of the catalog, whereas names which do not have a leading $

are relative to the scope in effect at the time.

At any point in time a user's scope may he;

1. A single ScopeSpec

2. A set of ScopeSpecs in which ordering is unimportant.
Current ScopeSpecs are searched exhaustively for all
matching members.

2
When a new node is created, the scope field in the node record

is automatically set to a private "own" space which is associated
with and created for the new node.

47

•-

3. A sequence of ScopeSpecs in which ordering is important.
Search ceases with the scopespec first providing a
matching entry.

Case 2 is referred to as a parallel scope, whereas Case 3 is a

serial scope.

A scope consisting of one ScopeSpec is analogous to a

"working directory" on other systems. A serial scope is a slight

generalization of search rule lookup, available on some systems.

Parallel scoping seems to be unique to the NSW system.

5.8 Entering Catalog Object Names

A set of rules similar to those for lookup apply when

entering objects into the catalog. As with lookup there are

various modes for doing this: rooted and unrooted names, with and

without ellipses.

Ellipses in the name of an object being entered in the

catalog serve to indicate that the name is to be "completed" in

the context of the current catalog using the incomplete name

lookup mechanism described earlier. Unrooted names with ellipses

are resolved within the context of the current scope only. The

resulting rooted name with ellipses can only be used to replace

an existing object. It can not be used to create a new object

name. New object names must be fully specified. To add an

object to the resource catalog an enter permission to the

appropriate region is required.

48

5.9 Naming Groups of Objects

The name lookup and entering conventions discussed so far

arc- intended to identify and name & single catalog entry. At

times, there is also a need to succinctly name a group of catalog

objects, usually in conjunction with some form of processing

common to ehe entire group. The SHOW OBJECTS command is an

example of where a designator is often used to denote a group of

matching objects instead of being resolved to a single object.

The syntactic fora of a name referring (potentially) to several

catalog objects is a RegionSpec. Keys and scopes are specialized

RegionSpecs. The form of a RegionSpec is equivalent to that of a

partial name specifier using ellipses, with the exception that

the wild card designator represented by the special character "*"

instead of *...*, is usea to denote reference to multiple

objects. A general RegionSpec can have multiple •*• components,

including preceding and trailing any specified name parts. The

matching set can be reduced by including particular attribute

values witr. the RegionSpec. For example:

%h.t>. *.C/type»f ile

would refer to the collection of file objects to which the user

nad lookup access« which began with component names A.B and

cermmstea «un component name C. Parallel Scope rules applied to

a Reqio/iSpec generate a collection of objects which is the union

of the RegionSpec applied to each scope region. Serial Scope

rules applied to a RegionSpec generate the set of objects

49

*

r

matching the specification for the first ScopeSpeJ which has a

non-empty lookup result.

50

rr

6. PILE SYSTEM MECHANISMS

The NSW file system and file handling in general play

critical roles in the functionality of the BSH sybtem. Piles are

the dominant objects populating the resource catalogs and are a

key item in the interoperability of NSW program services. This

section discusses some of the principal elements of the file

system mechanisms.

There are two distinct, but related storage systems for

supporting the file storage requirements of N.<;w users and

services. The NSW file system provides a long term, sharable,

uniform space for files. Piles in NSW space are managed by a

combination of NSW core software and NSW host support software.

Workspaces support service instantiation in NSW and represent a

second mechanism for file storage which can be characterized as

more temporary and private than NSW file space (although the

system does permit workspace files to remain inactive

indefinitely and to be remotely accessible). In addition,

workspaces do not necessarily support the syntactic and semantic

uniformity that NSW file space does. Attempts are nado to

provide a degree of uniformity in the treatment of workspace file

management across service providing systems, but total uniformity

across hosts is neither required nor expected.

The existence of two file storage systems in NSW is a direct

outgrowth of implementation and efficiency considerations. In a

heterogeneous host environment, it is impractical to

51

• i^^^Mai II

significantly modify either the existing operating systems or the

available services, and it is undesirable from a performance

point of view to support all of the distributed file system

attributes for all file objects.

The heterogeneous systems which are the basis for NSW host

software and the different levels of host implementation which

the NSW design permits lead to a user model which exhibits some

non-uniformities. For example, users are expected to understand

that attempting to use services and hosts with different levels

of commitment to the NSW system in an integrated fashion may

require extra care.

6.1 The NSW File System

Files stored in the NSW file system have the following

general syntactic and semantic properties:

1. All files are named with a common uniform NSW syntax
regardless of the host on which the files were created
or the host which currently stores the files.

2. File name lookup procedures for all file references
employ all of the standard NSW file system conventions
(i.e. scoping, unscoping, help disambiguation, etc.
and are subject to standard NSW access control
mechanisms. Each NSW file is sharable, lockable,
subject to audit trail, possesses common types of
attributes, etc. in a uniform fashion that is NSW-wide.

3. NSW software does not control access to any storage
unit smaller than the NSW file. Nor does it implement
standard access mechanisms for file i/o. Other than
recording information which types the structure of a
file object, and, where appropriate, performing
translations of complete files based on this
information, NSW is unaware of the internal

52

I

 - IM ••• .— ma^^m ^MMM

r^
organization of file data and does not support
programmable file access methods.

4. There is no a priori relationship between the name of
an NSW file and the host that stores the file. Users
are free to organize their NSW file space regions
without regard to host boundaries.

5. Regions of NSW file space, into which NSW files are
entered, are assigned to projects on a long term basis.

6. The NSW core software often automatically moves an
image of an NSW file from one host to another to
support remote access file references.

Because these features are implemented on a collection of

large scale, heterogeneous host computers, accessing files stored

in the NSW file system generally entails significant overhead.

6.2 File Images

Users can request that an information loss-less image of an

NSW file be created and moved from its current NSW storage host

to another NSW storage host (if such a transfer is possible) via

the PLACE command. The system understands the equivalence of the

original physical copy and the new physical image. Files entered

(imported) into NSW file space are always marked as "original."

Images maintained by the system as a result of a PLACE operation

are marked as a "user-directed-image." In addition, to support

the copy semantics for workspace file access, images of NSW files

are often transported from a storage host currently supporting a

physical copy to one which needs to use the file. When this

occurs, and when the destination host is an NSW File Bearing

Host, the destination may at its discretion retain an

53

(

'• -'• •••• i« in «I III II—l«M^—MMljyfcb»^—^—N^-.- — - .

T

information-lossless image of the original to serve as a -cached

copy. Images maintained by the system (for example, to support

tool file access) are marked as "system-directed-images." The

retention of a cached image is coordinated with the central

catalog.

The NSW file system understands the equivalence of all

physical file images, and can use any one to satisfy a user/tool

file request. Users can direct the system to use a particular

image by specifying the host attribute when referencing the file.

Users alone are responsible for managing (i.e. moving, deleting)

the disposition of originals and user-directed images (within

allocation limitations, of course). Users are "charged" for

storage associated with originals and user-directed images. The

system manages the collection of system-directed images that it

has decided to cache. A File Bearing Host may at any time,

assuming the proper coordination with the central catalog, delete

a cached image in accordance with its cache management policies

and current file space demands. The central catalog process

(Works Manager) may also initiate the deletion of cached images

using the same mechanisms as for supporting user deletion of

originals. Caching represents an area in which the system

performance may be tuned. Users are never "charged" for system-

directed-images.

On any lookup operation the user may limit the selection of

an image through the host attribute. Without a specified host

54

—mi

•- '• •—' "•-

attribute, the system selects any image interchangeably. If a

particular image is specified but unavailable, the operation will

fail. Replacing or otherwise modifying any image of a file

catalog object invalidates all existing images of the file.

6.3 Workspace Files

NSW supports a copy model for workspace file processing. A

copy is a snapshot of an NSW file at a given instant in time,

allowing for the possibility of some host or service dependent

data transformations from the original. The NSW system does not

maintain the mutual consistency of workspace copies of NSW files.

Optimizations support read only access whereby the file is not

actually copied into a workspace when a locally accessible NSW

file space image is already available. However, the semantics of

file copying still prevail from the perspective of the accessing

service.

NSW relies on a workspace copy model of file access as a

means of achieving uniform access semantics for all Tool Bearing

Hosts. In this way, the user/programmer view of a file reference

is the same regardless of the availability of local NSW file

storage resources on the host, and regardless of whether or not a

information lossy, automatic tool specific file translation

occurs. In addition, NSW does not provide host independent file

access methods, placing further emphasis on integrating the NSW

copy mechanism with local host file access methods. This

55

-«

r^
approach was motivated by the desire to make minimal

modifications to existing software tools.

Files stored in NSW workspaces have the following

properties:

1. Workspace files are individually and uniquely named
using a syntax which includes host specific or service
specific naming conventions.

2. Although some workspace files may be derived from NSW
file system files (for example, were created by copying
or otherwise processing NSW files), the NSW file system
keeps no record of this relationship. Jnvironments
whereby a workspace file bears a definite logical
relationship to an NSW file can be developed by users
and/or tool interface software using NSW supported
mechanisms.

3. All files in an NSW workspace are stored on the
workspace host.

4. Since workspace files are not managed by NSW file
system software, there are no mechanisms for supporting
multiple images of them, or for automatically migrating
images of them to other hosts.

5. Workspace files are private to those users who can
access the workspace. There is no NSW access control
for objects smaller than an entire workspace, although
some workspaces may support host specific access
control mechanisms for individual workspace files
through the services that run in the workspace.

6. Workspaces assigned by NSW to support a user request
are often only temporarily bound to the user. Hence,
in many cases, workspace file storage will not
represent the long term commitment for maintaining
files that the NSW file system storage represents. NSW
host interface software provides mechanisms for copying
workspace files to permanently allocated storage areas
prior to deallocation of temporarily assigned
workspaces.

56

»

I. ...in.. .1,1 III llll
.... . . ~ -

6.4 Pile Locks

Users/setvices can request that a "lock" be set on an NSW

file to control access to it as it undergoes modification.

Historically within NSW these file locks have been known as

semaphores. A lock on an NSW file covers access to all images of

the file. The duration of the lock can be indefinite (until

explicitly cleared), or can coincide with the lifetime of the

setting activity (service or user session). A permission to

update the file object is required in order to successfully set a

file lock. Locks can be set in conjunction with the request to

access the file, or alternatively by using an independent lock

request primitive. A lock request can be one of the following

types:

o exclusive lock, whereby only the locKing user can access
the file object in any way

o exclusive write, warning on copy lock (EWWC), whereby
only the locking user can modify the file object, but
any user can obtain a copy of the file after an
appropriate confirmation (provided of course that the
actual file image is not being modified at the time)

o warning lock, whereby only requests which specify this
form of lock will be accepted for any type of access

Exclusive locks are intended to support strictly private use

of an NSW file object. EWWC locks designate a single modifying

igenc wn.ili* allowing copies of the file to continue to be made

after appropriate confirmation that this is desired. This type

of lock is a direct result of the predominant copy mode of file

acceso, leaving a consistent image maintained by NSW. A warning

lock is intended to support private user protocols for accessing

files.

6.5 Pile Representation

NSW recognizes two aspects of file representation: the

representation of the data elements within a file; and the

structure of the file, that is, the way data elements are

organized within the file.

Data representation types:

Text (8 bit bytes, each byte from a standard text code;
e.g., ASCII)

Binary + data element byte size

File structure types:

Sequential
Record structure

Set of records - fixed size or variable size.
Data is sequential within a record.
Each record has a size and a name - the name

may be numeric and implicit by the record's
position in the file, or it may be a string.

The representational information for each NSW file is

contained in the NSW catalog entry for the file, and is made

available to the appropriate host support software component when

access to the file is required. This information is the basis

for file translations necessitated by the heterogeneous host

environment.

58

-—

6.6 File Movement from Host-to-Bo&t

Files are moved from host-to-host xn NSW for a variety of

reasons. These include cools referencing an NOW til« vhich does

not have an image present on the local host NSW tile storage

area, and user commands initiating LISTING an NSW tils. One of

the basic models for file movement is as follows:

The NSW system co^po^ent which initiate? the file operation

is returned a list of descriptors for all the available physical

images of the file. Based on the location of the ;.Lle images

relative to the accessing host, one of the images is selected for

use. The strategy used in NSW is to use a locally available

image whenever available. If no local host image is available, an

image on a host of similar type is th* next preferable because of

the availability of transfer modes which are optimized for the

particular host type. This is known ;ia a family copy. The

transmission format for family copying is left entirely to the

discretion of the software implementer for the host: type. If no

family copy is available then the file is retrieved from any

available host using a standard NSW-wide transmission convention

and encodement known as IL (interchange language).

To retrieve a file from a remote storage host, the accessing

component initiates a transaction with a File Package component

on the selected storage host. Using the physical tile descriptor

data obtained by the lookup operation, the accessing component

communicates to the donor File Package tne nrme and tvpe of the

59

— -- • ^B^fcfc ^„gm^ifamu^ aa u

file to be transferred. The transfer takes place using

appropriate conventions on a direct connection between the file

donor process and the file receiver process. Foreman, Front

Ends, and other File Packages are all at various times potential

file recipients.

6.7 File Translations

File translation may be required to enable a file created by

a service on one host to be used by a service on another type of

host. The system supports and performs a standard set of file

translations both between different data representations and

between different file structural types.

the translations supported by the system include:

text -> text ;e.g., ASCIK->EBCDIC

text -> formatted text ;e.g., ASCII ->
; any of a set of defined
; printer standards

sequential text -> ;e.g., EOL -> EOR
record structured
text

record text -> ;e.g. EOR-> EOL
sequential text

record binary -> ;e.g., remove EOR's
sequential binary

In NSW, file translations occur automatically. When a file

is referenced the system decides what translation, if any, is

required by means of heuristics that take into account the

60

• • -*

structure and data types of the file, the nature of the

destination host where the file will be used, and the nature of

the service that will use the file.

61

- .,-—^JM—

7. PROVIDING PROGRAM SERVICES

One of the major features NSW provides users i * the ability

to access computational services on too] bearing boats. Se-rvices

are a type of object managed by the system.

The basic idea behind handling service« JS that s JBO :,U

provided a uniform interface for invoking any service by its

resource catalog name, or more pr«rci6ely by a "service spec'

which is looked up in the user's resource catalog context.

There are a number of different types of services the sy?,ten.

supports. These include:

Single interactive programs. The user interacts
directly with an individual program on a "service
bearing host". The user is effectively logged into the
host, running the indicated service in an availaole NSW
workspace.

Service bearing host NSW command interpret*is. The
user interacts with an NSW style command .language
interpreter on the host, to manipulate NSW files and to
run NSW services on the host. We call such a command
interpreter a "workspace command interpreter" fWS-CU
because it operates in the context of a workspace on
the host.

Service bearing host command interpreters. The us--r
interacts with the standard native command language
interpreter for the host, to manipulate files and run
programs on that host within the context of ar. NSW
workspace.

Service bearing host operatinq systems. Tie jse:
interacts directly with the service bearing has»
operating system. T'ais if known as l~P (Initial
connect Protocol) access to the hott, and is the
equivalent of ARPANET access to a well-known socket
address. The user is not automatically logged into the
host, and there is no NSW workspace. A host need not
have NSW software to be accessed in tnis node. It need

63

only support ARPANET protocols. The most common well-
known socket address is for ARPANET TELNET service/
although others are defined and used.

5. Batch Services. The user makes use of NSW features to
submit a job to a batch processing host. When a user
invokes a batch service, an NSW component known as the
Interactive Batch Submissin program (IBS) is actually
runt to interact with him together the information
required to submit the job (e.g. input files, etc.).
Following that, the job is placed in the NSW batch job
queue to be transmitted to the target host, executed,
and the results returned to the user, all under NSW
system control.

A user is able to invoke a service by the "use" command

regardless of its type. For example, if the operating system for

the RADC-Multics host was an ICP service cataloged in NSW name

space as $PUBLIC.SERVICES.ROME.MULTICS

NSW: use rome.multics

would place the user in contact with the Multics operating

system at Rome. Similarly, suppose the compiler for the BCPL

programming language is cataloged as the program service

SPUBLIC.SERVICES.BCPL. The command:

NSW: use bcpl
• • •

would place the user in contact with a newly created instance

of the compiler in a workspace.

For program services which are instantiated within NSW

workspaces and which access files, there are two basically

different modes of operation.

In native mode the workspace is used as a staging area for

64

|^^|

copies of NSW files which the service requires during the service

session. Through WS-CI commands/ copies of the appropriate NSW

files are moved to the workspace area. At this point, the

service executes directly against the environment defined by the

workspace(and the rest of the host) exactly as if it were

executing outside of NSW. That is, the conventions in effect

while the service executes are those of the workspace host, and

not NSW. When the service completes, the user can copy any

relevant workspace files back to NSW file space, again using a

WS-CI. This is the simplest way in which existing host services

can be provided access to files in NSW file space. It requires

nothing more than software to support a WS-CI and the movement of

files between a local workspace and NSW.

A second mode of operation is more integrated and requires

NSW supporting software on the service host to mediate file

references between workspace file storage and NSW file storage as

the service executes. Services that operate in this way are said

to operate in NSW mode. NSW mode services are characterized by

their ability to manipulate both workspace and NSW files. Tool

encapsulation is one of the techniques used in NSW to take

programs originally developed to run as native to the host and

convert them to operate fully integrated with the NSW system.

65

7.1 Tool Encapsulation

In general terms, NSW encapsulation implies the automatic

trapping and translation of local host operating system calls

into calls meaningful in the NSW system. Any trapping and

translation is done within the Foreman component. Using an

encapsulation technique, we take programs which are written

exclusively for the local host operating system execution

environment, and with little or no modification execute them as

NSW tools. This is possible only because of the similarity, in

many aspects, of the NSW system to a conventional single host

operating system. As an example, when an encapsulated tool

issues a local system primitive to gain access to a file, the

Foreman gets control and translates the request into one which

provides access to an NSW file. This assumes that the "old style

tool" is somehow capable of handling the NSW filename syntax

within the local host file manipulation primitives. In many

operating systems, TOPS-20 for example, this is often very easy

since the tool will frequently allow the "system" to gather the

filename from the user.

Under encapsulation, the Foreman is interposed between the

tool and the operating system for selected operating system

functions. With its intimate knowledge of both the local system

primitives and the NSW system structure, the Foreman provides the

NSW program execution environment using both local host

facilities and facilities supported by other NSW components.

66

Encapsulation cannot be discussed in ttcM ox its

algorithms. It requires an extensive knowledge of the local host

operating system prialtive operations, and a determination of how

they can be made to relate automatically to the NSW environment.

Thus each Tool Bearing Cost api-jroach to encapsulation ic somewhat

different. As far as the other NSW components are concerned.-

running an encapsulated tool is no different from running any

other type of tool. Generally the tool initialization and

termination conditions, interactions with the file system, and

the communication with the tool user will all require careful

attention within the encapsulation component of the Foreman.

A more limited form of encapsulation (one that employs only

automatic pretool execution Foreman processing and automatic post

tool termination Foreman processing to reintegrate the tool

session results with the NSW system) has also been used

successfully by some Tool Bearing Host implementers. While this

mode of interfacing may not be as integrated with NSW conventions

as a more complete encapsulation and may not be appioptiate for

highly interactive tools, it does allow existing software to be

inserted without extensive modification.

7.2 Conversational Partners

At various points during an NSW scssicn, a user may converse

with either an NSW command interpreter, a workspace command

interpreter or a service. These three conversational partners

67

perform similar functions, namely accepting user requests for

some action, and then carrying out the requested activity within

the context which the partner represents. They are

distinguishable in the commands they support, in the domain over

which the commands take effect, and in the form and style of

their interaction. To a rough approximation, the three levels of

conversational partner represent NSW's hierarchical refinement of

network-wide, host-specific, and service-specific contexts.

Within the NSW command interpreter context, the user can

expect to see a strict and uniform adherence to NSW conventions

for all commands and interactions, with the exception of commands

provided as interfaces to other contexts (e.g., the command to

import files into NSW file space from a host file system). All

commands are executed within the NSW session context. There are

a set of uniform commands for entering ("use" and "resume") and

returning from (*N) the more localized workspace or specific

service contexts.

A workspace command interpreter (WS-CI) context has aspects

which are uniform across all WS-CI's, and others which are

tailored to the host on which runs. There are a number of

similarities between some of the commands supported by the NSW

command interpreter and some of the standard WS-CI commands, for

example the commands for starting a service or copying a file.

The essential difference is the context within which the commands

are interpreted. Whereas NSW level commands are interpreted in

68

(

 ———»—*—— - — -

the context of the entire NSW object catalog, WS-CI level

commands are normally processed in a context limited to the

workspace and the workspace host. Additionally, WS-CI's support

commands which are in part oriented toward NSW objects and in

part oriented toward workspace objects in order to provide a

standard interface between the two file spaces. WS-CI's may also

be individually extended in ways which reflect the nature of the

facilities available on the support host. There is a standard

way to enter ("run") and return form (*C) a service environment

via a WS-CI.

Command interpreters which are part of services are the

least standardized among the potential NSW conversational

partners. Since the NSW command interpreter and the WS-CI are

both part of the NSW system software, uniformity can be required

and achieved. Since service software is, for the most part,

developed outside of the NSW context there is less control over

the conventions used. Conventions for different services can be

expected to vary, even when the services run on the same host

computer. Services also may vary quite a bit in their size and

complexity, ranging from a service with a single command to

services which include their own internal data and file

management mechanisms.

69

I—.-.,„,.„ «Him HI IMI • i aiJBl^_^^_^a——^Mfc> -~_

8. USER INTERPACE SOFTWARE

The Front End is the user's interface to the NSW. An NSW

Front End performs several distinct functions.

8.1 Command Interpretation

The Front End supports the NSW command language, the means

by which a user interacts with NSW. Command interpretation

involves parsing user typein and initiating the NSW system

operations required to satisfy valid commands. To date there

have been two implementations of the Front End - one that runs

under the TENEX and TOPS-20 operating system, and one that runs

under UNIX. The NSW command language is uniform across all

implementations of it.

8.2 Interaction with NSW System Components

In order to satisfy user requests the Front End interacts

with other NSW system components. These interactions are

governed by the set of NSW protocol "scenarios". In addition to

the scenarios which support the major functional aspects of NSW

(e.g. running services, manipulating files), there are a number

of scenarios concerned with supporting aspects of the user

interface to the NSW system. These scenarios are to a large

degree associated with obtaining the status of various NSW

components and data bases which support the system

implementation.

71

;

—

The Front End is designed to operate in two "command return"

modes: "deferred return" mode for which the Front End retains

control until the command is completed; and "immediate return"

mode whereby control is returned to the user immediately after a

protocol scenario for the command is initiated rather than after

the scenario completes.

The immediate return mode permits the user to initiate other

commands while the protocol scenario for a command is being

performed. When the scenario completes the user is notified that

the command has completed. The user displays any output produced

as the result of the command execution when, and if, he wishes by

an explicit or implicit "display" command. Immediate return mode

was implemented in direct response to the increased delays

associated with NSW operations requiring substantial interhost

activity.

usually the communication path between a user's Front End

and a service is a TELNET connection, although other forms of

communication have also been supported. A user may have multiple

tool sessions active at the same time. To support multiple

tools, the Front End provides a means by which a user may switch

his attention back and forth among the various active tools and

between the tools and the NSW command interpreter, while

maintaining the proper context for those activations currently

unattended.

72

_ .. __ I - - - - —

F wm

8.3 Terminal Control

The user and the Front End interact by means of the user's

terminal. The Front End exerts control over a number of basic

terminal handling functions, such as the manner in which various

non-printing "control characters" are represented when echoed and

output, the input characters that may cause "program interrupts",

and so forth. In addition, the Front End provides the means by

which a user may uniformly edit his typein before the Front End

acts on it.

8 4 Command Procedures

The command procedure feature permits a user to define

"composite" commands which consist of a sequence of NSW Front End

commands which are to be executed as a single command.

The definition of a composite command or command procedure

is a text file stored in the file system. When a command

procedure is invoked by the user, the corresponding definition

file is retrieved from the file system and interpreted by the

Front End. Command procedures are able to gather input (e.g.

responses to NSW "help" messages) from the user's terminal as

part of their execution. Command procedures were introduced in

part to cope with the repetiveness of a number of NSW operations

and in part to reduce the requirement for human interaction

during times of extensive network delay.

73

A particularly important command procedure is contained in

the Login command file. This file is the repository for a set of

user specified commands which are automatically executed by the

Front End whenever the user logs into NSW. The Login command

procedure enables a user to conveniently store information about

his preferred use of NSW and to have the Front End set various

system usage parameters for him automatically when he logs in.

8.5 Access to NSW

To access NSW a user first obtains an Front End and then

logs in. One way Front End's may be accessed by users is through

an ARPANET ICP exchange. In this sense, obtaining an Front End

is similar to accessing an ICP service. The user must instruct a

program acting on his behalf to engage in an ICP exchange with a

host that provides NSW Front End service. This may be done

explicitly by specifying a host and ICP contact socket, or

implicitly by invoking an "NSW contact" program that knows how to

obtain an Front End. A Front End obtained in this way is known

as a "dispatched" Front End.

After obtaining an Front End process, the user interacts

with it through the ARPANET TELNET connection established by the

ICP exchange. The Front End interacts with other NSW modules by

means of MSG communication. When using a program service the

user interacts with it through two TELNET connections, one

connection between the terminal and the Front End and the other

between the Front End and the service.

74

»

 ^MMM^.

 I Dispatched I
T | TIP |< TELNET >| NSW-CI

I I
I I

.. TELNET .
services

MSG

communication

FIGURE 2.

This configuration is shown schematically in Figure2. In

the figure the access host is shown as an ARPANET TIP, but it

could be any other host that supports user TELNET.

One of the problems with this configuration is that the user

is two TELNET connections removed from any services he uses.

This is the case even when the service used is on the host used

to access NSW. This is clearly undesirable for reasons of

efficiency. Perhaps more importantly, with this configuration

the ability to use local high speed communication paths and

protocols, such as employed by the IBM 327 8 full screen mode of

interaction, is lost. On the positive side, the dispatched Front

End can be supported on one of the otherwise important NSW hosts

(e.g. Works Manager host). This minimizes communication costs

between the Front End and (say) Works Manager, &nd aJsc minimizes

the number of different hosts needed for special purposes like

debugging and testing. The NSW system supports an Front End on

75

' i« wn^<

TOPS-20 host which is dispatched from a well-known ARPANET ICP

contact socket.

Another approach to providing Front End service is to place

the Front End on the user's access host. There are several

difficulties with adopting this approach exclusively for all user

access.

1. The Front End interacts with other components by means
of MSG. Each access host would need an implementation
of MSG. This is a substantial undertaking, and which
would be impossible for some access hosts, such as
TIPS.

2. The command interpreter function would need to be re-
implemented for each access host. Apart from the
expense, it would be difficult to achieve uniform
implementations.

However, having the Front End run in the user's access host

is a viable approach if the access host is one that is relatively

inexpensive so that there can be many installations of it, or if

there are many installations of it because the host is very

useful for other purposes. Recognizing this, the NSW project has

designed and implemented an enhanced user-access machine using a

PDP-11 UNIX host as a base. This configuration is known as a

UNIX NSW Front End. The configuration for this alternative is

shown in Figure 3.

The UNIX Front End provides the same basic functionality as

provided by a dispatched Front End on a TOPS-20 host. However,

since UNIX is itself a powerful host operating system which

supports a variety of sophisticated services, it is reasonable to

76

»

— MSG
I Unix FE |< >
I NSW-CI I communication

I ... I
I I

...TELNET...
I I
I I
V V
services

FIGURE 3.

allow users whose access point to NSW is a UNIX Front End to

access these UNIX services through their UNIX Front End. Such

services run under the control of the UNIX Front End in a fashion

similar to accessing other NSW program services. To effectively

support services on UNIX Front End host required a means for

moving files between UNIX and the NSW. Accordingly the UNIX

Front End has been enhanced with functions permitting limited

integration with the NSW file system.

77

 . ^^^fci mmm i^—a i i

9. RELIABILITY CONSIDERATIONS

As noted in Section 2, early versions of NSW were extremely

fragile and sensitive to many unanticipated everts in the complex

network environment. The loss of user files due to the fragility

of the system was a common occurrence. To alleviate tbla problem

an effort was undertaken to enable the system to rcbcr.tly handle

situations arising from host, network or company-.* crashes or

malfunctions. This was accomplished by adding some new component

interaction "scenarios" and augmenting other relevant existing

scenarios of operation toward improving system reliability.

Together, these system enhancements became known as the interim

reliability scenarios. They were referred to as "interim"

because they were intended to be replaced by a more pervasive

approach to overall system reliability. The so called "full"

reliability plan was never implemented. The interim pian was

implemented and enhanced with succeeding versions of the system.

It resulted in a significant improvement in system reliability

and represented an interesting (at the time it was implemented)

approach to providing for reliable operation in a distributed

system, complex situation. Some of the key aspects of the

system reliability enhancements which are operational in the

current NSW system are described below.

The goal of the interim reliability plan was intentionally

limited. It was an attempt to guarantee that system malfunctions

(other than catastrophic disk failures) will cause few, if any,

user files to be lost. This guarantee extended both to files

stored in the NSW file system as well as workspace files which

were "closed" but undelivered or temporarily undeliverable due to

the malfunction.

Recall that the basic model of an NSW computation has a tool

obtaining workspace copies of appropriate NSW files, modifying

them as necessary by the particular application, and then

delivering the modified files back into the NSW catalog when the

tool completes. Two types of failures were addressed by the NSW

interim reliability plan: failures that prevented the workspace

files from being delivered to the NSW resource catalog, and

failures that caused the catalog to "lose" a file after it was

already "successfully" delivered.

There are a variety of situations which could cause the

first type of failure. We briefly mention a few of these.

o Failure of the NSW host software or Tool Bearing Host
system before initiating the file delivery operation

o Host inaccessibility of the Works Manager host
preventing acceptance of the file at the NSW resource
catalog

o A failure at the user access point preventing completion
of the tool session

o A network failure preventing communication between
appropriate NSW system components for completing the
tool session.

The second type of failure occurs primarily as a result of a

resource catalog host failure before steps have been taken to

80

assure that the new catalog entry has been written to storage

that can survive the host crash and subsequent restart. Both

types of failures are addressed by a single, integrated

reliability plan.

9.1 Data Base Checkpointing

In order to guarantee that NSW file system files not be lost

(except under rare circumstances) it is necessary to preserve the

NSW file catalog.

Since the catalog is continuously referenced and updated,

most of the time part of it is in volatile storage (i.e., main

memory). To ensure that new or newly modified resource catalog

entries are copied to non-volatile storage relatively soon after

they are entered into the catalog a lock is taken on the entire

catalog periodically (20 minute intervals). The lock prevents

any Works Manager from initiating an interaction with the

catalog, but it allows any ongoing interactions to proceed to

completion. When all such ongoing interactions have completed,

ehe entire catalog is copied onto non-volatile disk storage. The

lock is then released, and new interactions can be started by

Works Manager processes.

This mechanism is sufficiently inexpensive that its

invocation at 20 minute intervals does not add significantly do

delays. The 20 minute interval does, however, introduce a window

during which the results of a successfully completed file

81

transaction may be lost. That is, since parts of the catalog are

in volatile style, should the Works Manager host crash, any

change to the file catalog since the last checkpoint may be lost.

In conjunction with this checkpoint, Tool Bearing Host and

Works Manager software were extended to ensure that resources

allocated to a tool session (e.g., workspace files) are not

discarded until any catalog modifications resulting from the tool

session have been securely saved by a checkpoint.

9.2 Saving Workspaces

Tool Bearing Host Foremen are responsible for maintaining

workspace file data in non-volatile Tool Bearing Host memory.

This data would normally be deallocated on tool termination.

However, under the NSW reliability plan, this data serves as the

redundant backup data which may be needed to prevent loss of user

files should the Works Manager host crash after files have been

delivered but before the next catalog checkpoint. To allow for

the eventual deallocation of the workspace file data, a

"guarantee" message is added to each tool termination scenario

indicating that a checkpoint which includes the results of the

tool session has been completed. When receiving such a message

from the Works Manager, a Tool Bearing Host Foreman can assume

that delivered files are "safe" from a system crash, and may

deallocate all of the workspace resources. Because of the

interval between catalog checkpoints, the guarantee phase of the

82

tool termination sequence can occur as auch £s 20 -i.inutes after

tool termination has been initiated. In the absence of such a

"guarantee" message, the Tool Bearing Host Foreman, is responsible

for maintaining the workspace contents until it can successfully

deliver the tool session rtsults to the catalog.

Failure to receive a guarantee message from the Works

Manager is only one of a number of events that may cause the Tool

Bearing Host Foreman to initiate actions to save the workspace

contents. Any NSW failure during the tool session will trigger

similar action by the Foreman. An NSW tool session which did not

successfully complete (from the NSW system perspective not the

tool perspective) will be saved, and Tool Bearing Host software

will periodically attempt to report it to the Works Manager until

the saved status is acknowledged. The Works Manager in turn will

report any newly saved tool sessions to the appropriate user,

immediately if he has an active user session, or else on his next

log in. Once a saved tool session has been recorded by the Works

Manager and indicated to the invoking user throrough his Front

End, the user has several options. Through appropriate Front End

commands, he can either continue the execution of the tool within

the workspace (assuming the tool has an appropriate restart entry

point), or cause immediate delivery oi any saved workspace files,

or have the saved tool session deallocated with no further

action.

83

-y

9.3 Tool Bearing Host Restart and Data base Resynchronization

There are a number of distinct patterns of failure recovery

to support the reliability model outlined above. Because of the

centralized control structure represented by the Works Managerf

an outage of the Works Manager host can block the completion of

many on-going service and file operations, and also block the

initiation of new requests requiring global NSW resources. To

ensure the immediate re-integration of NSW host resources with

the centralized system control functions after the Works Manager

host is restarted, the Works Manager broadcasts an "I am now

functioning" message to the Tool Bearing Host systems. This

prompts the Tool Bearing Host systems to synchronize their

current tool session data bases with a similar data base

maintained by the Works Manager so that tool sessions that were

successfully saved while the Works Manager was unavailable can be

reused as indicated above.

When a Tool Bearing Host itself becomes unavailable, due to

operating system crash or scheduled shutdown, all active service

sessions are necessarily prematurely terminated. In a similar to

a Works Manager host restart, as part of a Tool Bearing Host

restart NSW software on the host contacts a Works Manager in

order to reintegrate the host into the operational NSW system.

This involves data base synchronization and reporting tool

sessions which remain accessible to the appropriate users.

84

9.4 Failure Detection

One of the difficult problems encountered in developing a

system like NSW and distributed systems in general is that of

detecting component or system failures. In some cases there are

signals passed from one layer of the system to another indicating

the failure (e.g., a "carrier off" signal indicating a break in

communication). However, in most cases there is either no such

signal, or the signal is unpredictable in its delivery

characteristics and warrants a complimentary mechanism. This is

the general problem of the incompleteness of protocols which rely

on negative acknowledgements and for their correctness.

The mechanism most widely used in NSW to detect component

failures is the use of postive acknowledgements and timeouts.

Basically, whenever a component initiates a request for which it

expects a response, it sets a timeout interval which is the

maximum waiting time before declaring that the communicating

component is not operational and recovery (such as the

reliability scenarios previously noted) should be initiated. In

a system litte NSW as implemented on the ARPANET and its

constituent hosts, establishing useful intervals for timeouts is

itself a technical problem. The extreme variability in the

coanunicetion delays, in the loading of the participating hosts,

In th£ number of NSW components required to participate in a

scenario, and in parameters of an operation (e.g. size of a file

to be transferred), all contribute to the unpredictability in

response tiroes.

85

,

Because of these problems, two mechanisms have been

developed to enhance the use of timeouts for detecting failures

in NSW transactions. These mechanisms are complimentary to each

other, addressing the problem from the perspective of both the

initiating and the responding process. The mechanisms are the

intermediate status reply and the status probe.

9.5 Intermediate Status Replies

The concept of a partial reply for long transactions was

introduced to avoid the timeout of a transaction by the

initiating process or the intermediary processes of a compound

transaction due to an unexpectedly long event, such as the

transfer of a large file under heavy load. Transactions are

designated as "short" or "long". Long transactions are those

whose completion time is likely to have a large variance beyond

the normal variance of message transmission and simple

processing. For long transactions, the replies are broken into

two phases: the first phase reply is an intermediate status

response indicating only that all of the resources (hosts,

processes, files, etc.) needed to complete the transaction are

both currently available and committed to this transaction; the

second phase reply signals the normal completion of the

transaction. The responsibility for initiating the first phase

status reply lies with the last process invoked in any compound

transaction chain. Status replies are sent to the process

designated in the invoking message as the one to which final

86

replies are to be sent. This is the piocese which typically

times out the final response, and is usually the invoking

process.

It is the responsibility of all intermediary processes in a

designated long transaction to relay (and enhance', the *';utus

reply to any process which may be awaiting it. In general, one

or more intermediate status replies are acceptable (but not

required) for any transaction using NSWTP conventions. An NSW

component will commit a longer timeout interval to those

transactions which have indicated progress through one or more

intermediate status reply messages. Figure 4 is a model for the

introduction of intermediate status replies into a protocol

scenario.

I C(l) I
I I

M(l)

— >

ISR(l)
<—
R(D
<—

C(2)

M(2) M(N-2)

I —> . .. —>

I

ISR(2)
<— .

R(2)
<— .

ISP(N-?)
, < —
R(N-2)

M(N-l)

I — > I I
C(N-l) | | C(N) |

J.SR(N-l)
<—

R(N-l)
<--

FIGURE 4.

The diagram above represents a chain of N components.

Component C(l) initiates a protocol scenario the, completion of

which requires N-l additional components to be activated. Each

additional component C(i+1) is activated by sending a message

M(i) to it. Each message M(i) has as M argutter.t the transaction

87

id txd(i) generated uy component C(i). The iSR's are shown

returning to C(l) from C(N). When the operation is complete, a

chain of reply messages R(i) is sent from C(N) to C(l).

By allowing the servicing process to initially and

periodically substitute status replies in place of final replies

we provide some tangible evidence to the invoking process that

the appropriate NSW components are still functioning. However,

to make the procedures for recognizing component failures

independent of any chosen frequency of status replies from the

servicing process, an invoking processes (i.e. the process

maintaining the timeout) has the capability to initiate, at its

discretion, an operation which provides positive acknowledgement

that a component failure has not occurred. These operations are

called status probes.

One difficulty in introducing these status probe operations

is the use of generic addressing foi initiating NSW transactions,

When this addressing mode is used the exact name (specific

address) of the process handling the transaction is unknown to

the invoking process at the time the transaction is initiated.

Thus, requiring an intermediary status reply which cascades over

all of the processes of a long transaction actually accomplishes

two things:

Theie is some relatively immediate feedback that the
operation can be initiated and will proceed subject to
loading factors on the hosts and the network.

The initiating processes are provided with the specific

88

if • i !• •AM • • - --

addresses of their generically addressed counterparts.
This specific address can then be used to initiate
further status queries directly to the appropriate
servicing process.

9.6 Handling Timeouts

Associated with the two phases of response for long

transactions are two timeout intervals. The short timeout

interval is intended to protect against waiting too long (tying

up resources! before deciding that the operation is not likely to

complete because of resource unavailability. The long timeout

interval is a low overhead approach to protect against failure

during an operation, while allowing adequate time for the

operation to complete under variable load and size factors. A

component would commit to the larger timeout because it has the

prior knowledge from the intermediate status reply that the

operation has been successfully initiated, as well as the

knowledge of the relevant operational parameters (e.g. size of

file) .

Whenever a long timeout expires, NSW components are required

to initiate a status probe of the appropriate servicing process

and to renew the long timeout should the target process promptly

respond with a positive status reply. This response will

indicate that the component is still working on the request and

that aborting the transaction may be premature. NSW user

interface software is also programmed to allow users to initiate

status probe operations at their discretion for additional

89

- -—-

1 •" ' •' " •• -

feedback that the operation is progressing. In general,

components with direct contact with a user can set very liberal

timeouts provided the user is not locked out during the waiting

period. Components in direct contact with users also employ a

user to guide the software in its decision to abandon a

transaction due to timeout.

90

• —

r*

10. PERFORMANCE CONSIDERATIONS

The NSW system was a complex irad*rtaking, addressing a

number of new and difficult system issue« simultaneously.

Because it was a prototype system, every effort was made to make

extensive use of "application" level code to serve ai the system

implementation. A ground rule of the implementation was that

modifications to the operating system kernels of the constituent

host were to be kept to an absolute minimum. In the early design

and implementation stages there was little consideration of or

concern for the overall performance of the system. All of the

initial attention was paid to developing the new distributed

system technology. After a short while, it was apparent that the

performance of the system did not compare favorably with that of

current timesharing hosts. A significant part of the last few

years of the NSW project has been devoted to understanding and

improving the performance of the system.

The complex nature of the NSW system implementation mace the

evaluation of the performance of the system a difficult task.

For example, even when the NSW is mapped onto a single host it

involves a number of time-sharing jobs, each with multiple,

parallel processes running on a leige and complex operating

system (TOPS-20). Systems like NSW nsd not been built before and

very little support software wa« a"P.i!sb'e for Maturing its

performance. The few tools that were available only measured

selected parts of the performance characteristics of isolated

91

•MMdM - - -

Ff -—

parts of Lne system. Accordingly, the first major thrust of the

performance evaluation phase was the instrumentation of both the

operating systems and NSW system components to define and capture

relevant system performance parameters. After the effort to

instrument the system and understand its performance properties,

the project began a multi-year, multi-faceted approach toward

improving the performance characteristics of the NSW system.

This section briefly outlines the measurement and performance

improvement phases of the NSW project.

10.1 The Measurement Task

To understand the nature of the performance measurement task

and the tools used in that task, one must first understand some

of the implementation details of the NSW system.

As noted previously, the NSW system is functionally

decomposed into units known as the Works Manager, the Front End,

the Foreman, and the File Package. These components interact

with each other via the MSG interprocess communication facility

in well-defined patterns governed by the NSW system protocols.

In this manner, the location of the cooperating components

relative to each other is completely transparent. Interactions

among the components are grouped together into patterns called

"scenarios". A scenario consists of the NSW process interactions

required to implement a system operation, such as starting an NSW

tool or copying an NSW file. Each NSW component is implemented

92

- •

"^

as ordinary application code, and as far as the host operating

system is concerned, it is an individual entity making resource

demands en the system. It is the programmed cooperation among

these otherwise independent elements that implements the NSW

system. Tne host operating systems that run these elements are

unaware of the NSW.

There are two classes of tools which were developed and used

for NSW system instrumentation. The first class of tools views

the collection of concurrent activities on a host from the

perspective of the host operating system. They serve to focus

attention on the overall demand placed on the NSW host operating

system by the individual and collective NSW components for the

host, The second class of tools instruments the system from

within the various components themselves and is organized around

the performance of the higher level abstractions developed by the

NSW software in carying out the NSW workload. They serve to

focus attention on the NSW system performance from the

perspective of the NSW user.

The NSW Works Manager is implemented only for the TOPS-20

(TENEX at the time of the instrumentation effort) family of

computer systems. There is a Foreman, Pile Package, and MSG

implementation for each Tool Bearing Host, including TOPS-20,

MULTICS, and IBM-VMS systems. There art- Front Ends for both the

TOPS-20 and PDP-11 UNIX systems. Thus, a functionally complete

"NSW system" can be configured using exclusively TOPS-20 NSW

93

----- - - — • -^"^- •—

UNCLASSIFIED

A TECHNICAL OVERVIEW OF THE NATIONAL SOFTWARE WORKS(L)
BOLT BERANEK AND NEWMAN INC CAMBRIDGE MA
R E SCHANTZ ET AL. MAR 83 BBN-5238 RADC-TR-83-80
F30602-81-C-0213 F/G 9/2

V

I o £ *- IK
2.2

ii i>ia
.8

1.25 ||.4 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL Bl>N£AU Of STANOAHOS - l»*3 " A

• - • - -——

1 I

components running on a single, self-contained host system of

this type. For a variety of reasons, most of our initial

measurement activity focused on such a configuration.

The following were some of the tools used in the measurement

of NSW system performance:

o JSYS Measurements

JSYS measurement was a tool to record the number of
system call (JSYS) invocations and accumulate the
processing time in system context on a per-system call
basis cumulatively for all processes of a specific job.
Data is accumulated continuously for the given job from
the time the facility is enabled until it is explicitly
disabled. Using this facility, we were able to focus
our attention on those parts of the
application/operating system interface which were used
most frequently and/or consuming the most resources.

o Process State Sampling

The process state sampling mechanism was used for the
purpose of characterizing the various components of
delay within the operating system which contribute to
the overall response time. In a modern operating
system, there are a wide variety of factors which
contribute to the delay in execution of any given task.
Some of these are dependent on the specific task while
others are a reflection of the multiplexing of system
resources among competing processes. The process state
sampling broke down the various forms of delay for each
NSW component, indicating the percentage of time spent
in the various wait states.

o System and Job Performance Data

This program recorded periodic samples of data collected
by the operating system during its normal operation.
Among the pertinent values reported are the monitor's
estimate of each process' working set size at the time
of the sample, the scheduler.queue to which the process
currently belongs, the fraction of the sample interval
spent in various system overhead routines, the average
page traffic to the drum and disk, and the fraction of
the processor sold to each accounting group.

94

•••ii

o MSG Event Logging

The MSG communication subsystem was instrumented with an
event logging capability which time stamped and recorded
performance data at each major event for all <*l the MSG
processes on a given host. Major events included the
initiation and completion of communication operations
from subordinate processes (e.g., sending and receiving
messages) as well as the allocation and deallocation of
processes to support generic classes. Additionally, for
each event, the CPU time utilized by MSG and by the
inferior component, and samples of the current paging
activity counters for both were recorded. With the
knowledge of the NSW component protocols, measures of
NSW scenario performance for each component, as seen
from MSG, were computed.

o The Performance Monitoring Package

The Performance Monitoring Packages (PMP) provided
application level components with a tailorable mechanism
by which certain resource utilization characteristics of
the programs could be measured and automatically
processed. PMP consists of two basic programs: one
which implements a form of event logging, and the other
which processes the event logs and prepares analyses
according to flexible format definitions. PMP packages
were used to define and measure processing intervals
relevant to the overall NSW system function or to the
appropriate abstractions in a particular component
implementation.

o Page Access Monitor

This tool was developed to record the virtual memory
page reference strings for the various NSW system
components. A tool of this sort was needed to help
understand the interplay between the functions being
computed by the components and the demand paging memory
multiplexing strategy used within the operating system.

o NSW Script Driver

This tool was developed to automate the introduction of
system workload. It simulated and coordinated the use
of the system by multiple NSW users. The tasks which
were to be executed were taken from scripts contained in
files prepared off-line from the experimentation. The
scripts were carefully designed to exercise particular
parts of the NSW functionality.

95

»

10.2 Evaluation and Analysis

Using these tools, a number of experiments were undertaken

to measure and evaluate the NSW system, its system components,

and the hosts supporting those components. The results of the

experimentation were reported in depth in a number of technical

reports. Here we highlight a few of the conclusions from the

performance evaluation phase.

The NSW performance experiments showed that there was no

single system variable which could be used to accurately reflect

NSW performance or which could be identified as the predominant

system bottleneck. Rather, it appeared that the explanation of

NSW performance characteristics lay in the extensive consumption

of many host system resources by the cumulative NSW components in

carrying out the complex series of interactions involved in the

various NSW operations. This was further compounded by a host

operating system environment which, partly because it is

optimized toward multiplexing a series of unrelated processing

requests, could not adequately handle a transaction oriented

subsystem with demands comparable to those of NSW.

The experiments also confirmed our expectations that one

could achieve excellent NSW response characteristics with a large

enough single host configuration and a limited load. However,

the amount of the computer resources required by NSW processes to

carry out NSW operations, the causes of which were many, severely

limited the achievable throughput and made such configurations

somewhat non-cost-effective.

96

__aBM^a«HB«h»^ . •*! llll

Only large host NSW configurations were able to adequately

handle the large component processing demand, and then only for

relatively few users (compared to "normal" usage patterns for the

host configuration) before queueing delays drove response times

quite high.

10.3 A Closer Look at Resource Demand

This section takes a closer look at one of the major

resource demands (processing time) for a typical NSW transaction

in order to understand the components of the heavy demand. The

NSW GET FILE operation initiated by the Foreman process, which is

similar to "open file" operation in a conventional host, is used.

The following table breaks down the per-component CPU demand

for the participants in a single GET FILE scenario for a typical

NSW host system. This CPU time is for an unambiguous file

reference requiring no inter-host file movement.

component

Foreman
MSG-FM
Works Manager
MSG-WM
File Package
MSG-FP
Scheduler

nßJL CÜÜ

68ms
100ms (2 messages 50ms/message)
494ms
200ms (4 messages)
453ms
100ms (2 messages)
lÄßas (1)

1515ms

Table 1: Individual process CPU demand for a single NSW
GET FILE Transaction.

97

~^H

Twenty six percent of the total CPU time is spent

transferring messages between components. This message passing

is analogous to more familiar subroutine linkage or domain

crossing in most programming languages. However for the current

NSW implementation, the "linkage" costs are actually even higher

than the cost of plain message passing. For example, the

messages themselves follow NSWTP, the NSW-wide standard encoding

scheme which is foreign to the internal format of all of the host

system. Thus, the form of messages and data passed in them

require encoding and decoding by both sender and receiver for

every message. Also added to the linkage cost is the approximate

100ms spent in scheduling the CPU for the logically integrated

processes. Because of the transactional nature of the NSW

implementation, each new generic invocation of the Works Manager

and File Package must also establish a processing context for the

new request. This too adds to the CPU demand associated with

linkage, although we have no estimates for its extent in general.

Thus, for all of these factors, about 38% of the processing

demand is associated with component linkage. Table 1 shows that

the Works Manager CPU demand represents around 32% of the total

processing demand to support file name lookup, access control and

related functions, and that the File Package CPU demand

represents about 29% of the total to support file copying and

related functions. Thus there are three relatively large,

roughly equivalent CPU demands which comprise the entire

operation (99%).

98

*

• i - - I——M i i - •• - i M

-~~

We believe that there are three different factors which at

least partially explain these three extensive NSW CPU demands

relative to similar functions within single site, conventional,

native host operating systems. Linkage CPU demand is most

related to structural differences between NSW and the native host

system. File Package demand is most related to functional or

conceptual system differences. Works Manager demand is most

related to internal component organizational differences. We

examine each of these individually.

NSW is structurally very different from a native host

operating system in which typically each major component is

interconnected through some sort of efficient, although sometimes

very complex, subroutine linkage. The NSW implementation has

each major component as a separate timesharing job. The system

design attempts to handle the most complex situation where a user

connected to one machine, might be running a tool on another

machine, which references a file on yet another machine. A

single implementation strategy was pursued which only handled the

most general case. This is not unlike a conventional operating

system, except that linkage between the logical entities is

typically via unprotected subroutine call at machine instruction

speeds instead of by messages at communication speeds.

When the tool and file are indeed or separate physical

hosts, there is no alternative to communication oriented linkage,

which is the major cost for the added functionality of non-local

99

1

«IMÜ

file referencing. However, for local data references, when the

native operating system become an overhead benchmark for

functionally equivalent services, an optimized strategy which

avoids or reduces the interprocess communication linkage cost

seems to be required.

If all of the linkage costs were eliminated, NSW file

transaction processing would still not compare favorably with the

local host equivalent function. Part of the reason is a

functional difference between the NSW and a local host versions

of the similar operation. In the native host environment, access

to a file opens a more or less direct path to the stored file

data. NSW does not currently support such direct access to its

files. Instead, it supports the notion of a workspace copy of

the data in the original file. This means that, in general,

whenever an NSW file is referenced, a copy of it must first be

made before completing the tool's file access request. Further,

since the file may originate on another type of host, the most

general case includes network transmission and translation to

generate the workspace copy. The copy model for the NSW file

system was motivated by the notion that copy of access is

appropriate to many aspects of software production and by an

attempt to achieve uniform NSW file system semantics over a

distributed file system, while continuing to use local file

access methods. The burden of the file copy related overhead

falls to the File Package, and accounts for at least some of its

extensive CPU demand.

100

^h.

—

The Works Manager performans the catalog lookup and access

control check for NSW objects (files, tools). Native host file

access implementations provide similar functions without the

large CPU demand exhibited by the Works Manager. As noted

previously, the main difference we see between the Works Manager

implementation of these functions and the local host

implementation is in the organization of the data which

represents the catalog, and the procedures used to access it.

The Works Manager uses a general purpose, associative information

retrieval data base system as the basis for the resource catalog

implementation. Although this approach provides great

flexibility and supports a powerful user interface to the

cataloged objects, it is not as efficiently encoded or as

inexpensively accessed as native host conventional filing

systems.

10.4 Performance Enhancements

The NSW instrumentation and performance evaluation effort

provided a number of insights into various optimization

strategies. Below we list some of the steps that were taken over

an extended period which were in some way related to improving

performance. In some cases performance enhancement was a by-

product of an effort which was originally targeted for other

purposes.

o Reduced Component CPU and Memory Demand

101

" "

• 1
Using the results of the instrumentation mentioned
earlier, each component underwent an internal
optimization, reducing CPU demand dramatically, but with
somewhat less successful results in reducing paging
demand. This may reflect the inadequacy of automated
tools for dealing with dynamic memory allocation issues.

o Host Hardware and Operating System Upgrade

The major support host for NSW was upgraded from a DEC
KA-10 running TENEX to KL-20 running TOPS-20. This
upgrade improved the CPU performance approximately by a
factor of two, and served as the basis for larger memory
systems which can more effectively support the large
virtual memory demands of NSW.

o BCPL Compiler Improvements

Some of the major NSW components (Works Manager, TOPS-20
File Package) are coded in BCPL. Recent improvements to
the BCPL compiler include an optimized code generator,
as well as support for in-line assembly code. NSW
software is now being adapted to use the enhanced
compiler. Benchmark tests indicate a code size
reduction of about 15% using the new compiler.

o NSW Protocol/Scenario Enhancements

A number of NSW Scenarios were modified in an attempt to
provide the same functionality more efficiently. Most
notable here is the optimized placement of system
functions in an effort to reduce communication overhead
and intercomponent transactions. The expense of moving
these functions has predominantly been in re-
implementation costs. This is an on-going activity.

o System Architecture Enhancement

An implementation of the UNIX Front End has recently
been introduced into the NSW configuration, providing
extensive on-site computing capabilities, and reducing
communication cost and overhead.

o System Design Enhancements

The design of certain parts of the system functionality
were modified/enhanced in part to support optimized
performance. Notable improvements here include the
extended lifetime of workspaces to support multiple,
consecutive tool invocations without deallocation and
subsequent re-allocation, and modified object lookup
rules which can be supported by an optimized catalog
implementation.

102

mm* A

•• •• —

NSW version 6.0, which incorporates a number of these

performance enhancements, is now under development.

103

- ••

"1
11. OPERATIONAL ISSUES

One of the phases of the NSW project was a period in which a

number of tools and procedures were developed to improve the

operability of the system. As with most such experimental

projects, initial procedures for operating and configuring the

system were ad hoc. The multiple heterogeneous host environment

also contributed to the level of difficulty in operating, testing

and debugging the system. This section discusses a few of the

tools and mechanisms which were developed in attempting to

transform the NSW system into a product in preparation for the

AFLC technology demonstration.

11.1 Global Configuration Pile

Many of the NSW components were developed by different

organizations and by different programmers within the

organizations. Especially across the heterogeneous components

(i.e. TBH software for the various ARPANET hosts) the style of

controlling operational parameters varied greatly. These

parameters would typically include site dependent data such as

directory names used in the implementation, switches to control

debugging aids and logging, and parameters for such variables as

timeout intervals and well-known socket addresses. In some,

cases component parameters such as these were built into the

programs requiring recompiliation to change them. In other

components they were initialized using an interactive dialog the

105

 —

first time the component was run. Still others used private

initialization files with private formats for encoding their

choice of relevant parameters.

To simplify the operation of the system when it began to be

operated by a group independent of the system developers, a

global configuration file was defined. The global configuration

file was intended to define parameters which would be globally

interpreted by the various components (e.g. logging control

switch), as well as to serve as a repository for all components

and site specific parameters in addition to the globally defined

parameters. The global configuration file is a specially

formatted text file containing all of the parameters relevant to

an NSW configuration. The file is designed to be maintained at a

central site and broadcast whenever it is changed to each of the

hosts of the configuration. At system startup, each component

searches the local copy of the configuration file to find both

the global and private parameters which have been set for this

incarnation of NSW service at the host. In this manner, an NSW

operator can easily change the operational characteristics of the
*

NSW system using available text editing and file transport

services.

11.2 Fault Logger

In a situation similar to that described above, each of the

NSW components and hosts had private mechanisms for recording

106

•- - - i
—

*

indications of faults and errors detected during their operation.

Since many of the components were run as unattended tasks which

were not in contact with a user, the predominant method for

recording relevant parameters of detected failures was to write

the failure report into a locally maintained fault log file.

Depending on the resources available locally, this file was

sometimes overwritten by failures in subsequent NSW incarnations.

This distributed approach to failure recording made it quite

difficult for NSW operators to quickly detect and repair or

obtain help in repairing system problems.

To remedy this situation, an additional NSW system

component, known as the Fault Logger was defined and implemented.

The Fault Logger is the NSW component which collects fault

messages from other NSW components, and records and displays them

for the system operator. Fault messages are structured records

of errors detected by the system components while the system is

running. They indicate the nature of the fault detected, and

include other parameters and debugging aids that can be used to

help isolate the problem.

When a fault message is received by the Fault Logger, it is

recorded in a master fault repository. At the same time a copy

may be printed on a hard copy log, while additional copies may be

deposited in other special repositories or given to special

processing programs. All actions other than depositing the

message in the central repository are conditional, and are under

107

the control of system operators. The conditional processing is

controlled by filters which are used to scan the fault report

messages for content criteria matching the filter. For example,

a filter can be used to cause only fault report messages above an

operator specified priority level to be displayed on the

operator's terminal.

To complement the fault message repositories, there is an

"off-line" retrieval system for searching, sorting and collating

individual fault reports or collections of faults based on their

contents. In addition, there is an on-line operator interface to

the Fault Logger, enabling the operator to create, modify and

install appropriate filters used to control optional processing

of arriving fault messages.

11.3 NSW Bug Report Tracking Tool

The NSW project involves many people working for different

organizations dispersed geographically across the United States.

This project structure limits highly interactive communication

between project personnel which is crucial to the timely

completion of many project activities. This has been reflected

in the amount of time that was needed to achieve design and

protocol consensus and in difficulties with component

integration. Additionally, the identification, reporting,

tracking and correction of bugs became a suprisingly difficult

task. This was due in part to the complexity of the system and

108

in pact to the limited communication paths between project

members. This problem was addressed by the development of a tool

to record and track bug reports. The name of the tool is MONSTR,

which stands for Monitoring Software Trouble Reports (STR).

Driven by an embedded protocol, MONSTR coordinates and

supports the activities of people in various organizations as

they report, acknowledge, classify, analyze, and repair bugs.

Thus, it is a tool for maintaining contact among all personnel

concerned with particular software repair efforts.

There are three main groups which MONSTR serves to

interconnect. The first group is composed of people report bugs,

deficiencies, anomalies which may or may not be bugs, and

documentation errors. These people do not generally get involved

in fixing bugs. NSW users are included in this group.

The second group is involved in fixing bugs as well as

reporting them. This group includes the NSW operators and

developers.

The third group includes NSW managers, such as the project

sponsors and the head of the Architecture Control Contractor

(ACC) organization. These people generally do not report or fix

bugs. Instead, they monitor the work-flow of those who do.

MONSTR has facilities for generating and transmitting STRs,

splitting and merging STRs, cancelling and modifying STRs, and

classifying and retrieving STRs. It includes well-defined

109

internal protocols for STR transmission from organization to

organization to initiate the identification/ fixing, and

installation of the software repairing the error. MONSTR also

maintains the current status and a history for each STR.

MONSTR has been installed as a tool in the NSW system so

that users can easily report system problems while on-line, and

can subsequently check on the status of the effort to fix the

problem.

110

12. CONCLUDING REMARKS

At this tine NSW must still be viewed as a prototype system

implementation. It is only now undergoing significant testing by

actual users. It's major impact to date has been the experience

gained both in exploring functionality which is useful in a

distributed operating system context and in evaluating specific

approaches toward achieving this functionality. When viewed in

this light, and in terms of the additional experience gained in

uncovering and facing a wide variety of distributed system

issues, the project has been extremely successful. We have had

the opportunity to build, assess and rebuild certain aspects of

the system functionality and structure. The NSW Technology

Demonstration should prove useful in assessing some of the

premises on which the NSW was built.

Defining, designing, implementing and operating the NSW

system has been a difficult undertaking from both a technical and

non-technical viewpoint. The NSW project was perhaps the first

to focus on the whole set of issues, spanning the spectrum from

design to operational considerations, for a system of this type.

The problems of dealing with a completely distributed system

environment are new, and the problems of dealing with extensive

heterogeneity in such an environment are hard.

In part, that heterogeneity and the desire (and necessity)

to have experts in the various constituent systems participate in

the system design process led to a project organizational

111

- • •• -

structure which mirrored the underlying computing environment:

geographically dispersed project team members using relatively

low bandwidth communication paths to coordinate their activities.

This type of project organization was not particularly well

suited for general purpose system building, for which we believe

consistency, coherency and integration of the system parts is the

overriding consideration. A geographically distributed project

organization makes it more difficult and time consuming to

achieve consistency and a clarity of the product. However, a

beneficial side effect of the distribution of the project

organization is that system concepts have 'a priori' been exposed

to and influenced by a number of different system design

perspectives and philosophies.

Another non-technical issue that had significant impact on

the project was the lack of coordinated administrative control

over the project's computer resources. Although NSW provides a

logically centralized administrative view of the system, its

computer resources are obtained from a number of administratively

distributed and autonomously operated machines connected to the

ARPANET. Two aspects of this arrangement were especially

troublesome. One was the frequency of host system modifications

and upgrades. Because NSW is itself an operating system running

on top of existing operating systems, parts of it were especially

sensitive to relatively small changes in the underlying systems.

In addition, many of the software tools supported by the

underlying hosts are an important part of the overall NSW system.

112

-

The new releases, bug fixes, etc. for a given system or tool were

seldom coordinated with NSW project plans or with each other. As

a result, there are many more disruptions of this type for the

system maintainers and users than had the same resources been

under a single administrative control and hence subject to more

global coordination.

The disruptions due to new releases of software tools were

minimized by designating particular versions of tools as NSW

versions supported by private copies coordinated where necessary

among collections of participating hosts. This had the effect of

providing global update control within the set of NSW hosts, but

at the expense of timely access to the new improved host

supported maintenance releases.

The other negative aspect of multiple administrative control

of hosts which had a significant effect was that multiple

versions of the same operating system (e.g., TOPS-20 Version 4

and TOPS-20 Version 1) needed to be supported simultaneously by

NSW software. Worse still was the prevalence of local

independent customization of the operating system at each site

which necessitated a variety of special case situations to be

individually uncovered, handled, tested and supported. These

situations were a constant and heavy drain on project manpower.

In conclusion we briefly note a few key technical issues

which emerged as a result of our experience with building the NSW

system, some of which have been partially addressed in newer

versions of the system.

113

1. Visibility of Distribution

This issue relates to the degree to which the
distributed nature of the underlying system is visible
to and controllable by the individual user. There is a
continuum of designs possible. At one extreme is
complete invisibility (transparency), where a user need
not be aware of the network operations or network host
systems used on his behalf, and in fact cannot directly
exert any control over the manner in which they are
used if he is aware. At the other extreme is complete
visibility where the user must directly exert control
over the selection of resources to service his
requests. The NSW project started out decidedly on the
transparent side of the spectrum. Over time it has
slowly but surely moved toward the less transparent
side in order to provide more user control of resource
management decisions and to accommodate resources which
could not have been adequately handled under a policy
of maximum network and host transparency. Some reasons
for this shift in approach are the following:

Due to the differences in performance &nd
reliability of local and remote operations (at
least in an ARPANET-like environment), users had
to develop working models of how the system was
put together anyway, in order to effectively use
the system when conditions were non-optimal (e.g.
in failure and high load situations).

An understanding of various system components and
hence the underlying structure of the system is
sometimes required for a user to take full
advantage of various optimizations added to
improve the performance of the system.

The high cost of introducing new hosts and new
resources into the system limited the scope of the
available resources. In an attempt to achieve a
more "complete" system by providing access to more
resources without having to rebuild or completely
integrate the desirable resources, lesser degrees
of integration were defined. This obviously led
to greater visibility of the underlying milieu.

Related to the above point, different levels of
effort were applied to the integration of "fully"
participating hosts. In addition, the integration
of these hosts and their services by necessity
took on a distinctively local flavor (i.e.
strongly related to the environment in which they

114

-~_

-•

were originally developed). This also led to a
need for increased awareness of the individual
characteristics of the various resources.

Granularity of Objects

One of the key issues in the design of any distributed
operating system is the granularity of the objects
provided by the system. In a system like NSW, one
could choose abstractions ranging in size from an
entire host, to a file, down through a page of data,
and even smaller as a basis for achieving the required
logical integrity of the system. For NSW, the chosen
grain of an entire file and an entire application
program (service) seems to be appropriate, given the
dominant role of existing large main frame computers.
However, other environments which may include less
complex host operating systems, faster communication
media and machines, or applications built specifically
for the distributed system environment may profit from
a different unit of granularity in achieving logical
uniformity. In fact, later versions of NSW have been
enhanced to include larger grain abstractions, such as
an entire host operating system, partly to reduce the
effort needed to integrate resources into NSW in an
acceptable manner, and partly as a means of providing
the raw performance of the stand-alone system for those
users to whom this was appropriate.

Duration of Context

,

A related issue concerns the longevity of the bindings
which are established during the course of using the
system. The number and frequency of the dynamic
bindings needed to support user activities has a
profound influence on the performance of the system.
There are, however, tradeoffs between flexibility,
performance and complexity which need to be tailored to
the specific environment. Early versions of NSW
established new file-to-host bindings and user-to-
service host bindings with each NSW tool invocation.
This was the most universal and flexible binding model.
However, when successive tool sessions run on the same
host and access the same files, re-establishing the
same bindings is unnecessarily expensive. Later
versions of the system achieved performance
improvements in these situations by such techniques as
extending the lifetime of some of the critical bindings
through the refinement of the workspace concept and
caching certain objects. Because the overhead
associated with establishing bindings in a distributed

115

system is often more complex and therefore more
expensive than in a conventional system, and because
there are typically many more binding decisions in a
distributed system, this is a very critical distributed
system design area.

4. Multiple Copy Objects

The potential for various types of replication and
redundancy in a distributed system architecture
introduces a number of issues relating to the semantics
of system objects. For example, what level of
"sameness" is required amonvg similar objects for them
to be considered instances of the "same" object, as
opposed to different objects with some special
relationship? NSW started out by considering
relatively loosely coupled instances of similar objects
were to be the same object (e.g., the same tool on
different hosts, or workspace file copies and the
original). Later versions of the system tended to
decouple the association at lower levels while
providing means to treat a set of similar objects as a
single object for some classes of operations at a
higher level. The issues here can be quite complex in
a distributed, heterogeneous environment where subtle
and not so subtle differences in environment may
introduce differences in the objects at some level of
abstraction, and result in automatic conversion to
overcome many (but not usually all) of these
differences. Determining what role the system should
play in supporting these special relationships is an
important design issue.

5. Migrating System Functions

The experience with the development and evolution of
the NSW system has led us to two important observations
regarding the construction of such distributed systems.
One is that it is extremely hard to test, debug, and to
isolate problems in such systems. The development of
testing and debugging methodologies and tools seems to
be an important area for research. Second, it seems
inevitable that, over time, functions which are
implemented within one component of the system will
(statically) migrate to other components. Such
migration may be motivated by performance enhancement
based on locality, changes in technology, an expanding
role for a component, or any of a number of other
reasons. All too often, this requires total re-
implemention of the function in the new context. The
process abstraction in NSW that is supported by MSG was
extremely effective in allowing complete

116

•

i

reconfigurability at the process level. However,
because processes and interprocess communication were
expensive this flexibility extended only to
decomposition of the software architecture into major
system components. Moving smaller units of
functionality from one host to another or from one
process to another meant sometimes excising a function
from one place and always reimplementing it elsewhere.
The NSW project repeatedly faced this situation. A
standard system wide implementation language (not a
possibility when the NSW project started) might be a
start toward supporting this type of functional
migration. However, much more is needed to make this
migration even semi-automatic such as re-establishing
all of the distributed bindings to the migrated
function. This area also seems to be one in which more
research and development effort could profitably be
applied.

117

•BMMriMMaM» • — -

rr ••••••mHHHMniHI

M/SS/(W
of

Rome Air Development Center
RADC plan* and txtc.uX.eA> xe&eaAch, de.veZopme.nt, test and
selected acquisition pKogtam in iuppoxt oi Command, Control
Communication* and Intelligence (C3I) activities. Technical
and engineexing *uppont within axea* oi technical competence
i* provided to ESP PKogKam OUice* IPO*) and othex ESO
element*. The principal technical mission onto* axe.
communication*, electfiomagnetic guidance, and contxol, *uA-
veiZLance oi gfiound and aexo*pace object*, intelligence data
collection and handling, inioKmation *y*tem technology,
iono*pheKic propagation, *olid & tote. Science*, micAovoave.
phy*ic* and electAonic Keliability, maintainability and
compatibility.

